MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CHARACTERIZING THE PROPERTIES OF CLUSTERS OF GALAXIES AS A FUNCTION OF LUMINOSITY AND REDSHIFT

Author(s)
Andersson, Karl; Peterson, J. R.; Madejski, G.; Goobar, A.
Thumbnail
DownloadAndersson-2009-CHARACTERIZING THE P.pdf (3.808Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We report the application of the new Monte Carlo method, smoothed particle inference (SPI, described in a pair of companion papers), toward analysis and interpretation of X-ray observations of clusters of galaxies with the XMM-Newton satellite. Our sample consists of publicly available well exposed observations of clusters at redshifts z > 0.069, totaling 101 objects. We determine the luminosity and temperature structure of the X-ray emitting gas, with the goal to quantify the scatter and the evolution of the LX -T relation, as well as to investigate the dependence on cluster substructure with redshift. This work is important for the establishment of the potential robustness of mass estimates from X-ray data which in turn is essential toward the use of clusters for measurements of cosmological parameters. We use the luminosity and temperature maps derived via the SPI technique to determine the presence of cooling cores, via measurements of luminosity and temperature contrast. The LX -T relation is investigated, and we confirm that LX vprop T 3. We find a weak redshift dependence ($\propto (1+z)^{\beta _{LT}}, \beta _{LT}=0.50 \pm 0.34$), in contrast to some Chandra results. The level of dynamical activity is established using the "power ratio" method, and we compare our results to previous application of this method to Chandra data for clusters. We find signs of evolution in the P 3/P 0 power ratio. A new method, the "temperature two-point correlation function," is proposed. This method is used to determine the "power spectrum" of temperature fluctuations in the X-ray emitting gas as a function of spatial scale. We show how this method can be fruitfully used to identify cooling core clusters as well as those with disturbed structures, presumably due to ongoing or recent merger activity.
Date issued
2009-05
URI
http://hdl.handle.net/1721.1/96012
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
Astrophysical Journal
Publisher
Institute of Physics/American Astronomical Society
Citation
Andersson, K., J. R. Peterson, G. Madejski, and A. Goobar. “CHARACTERIZING THE PROPERTIES OF CLUSTERS OF GALAXIES AS A FUNCTION OF LUMINOSITY AND REDSHIFT.” The Astrophysical Journal 696, no. 1 (April 21, 2009): 1029–1050.
Version: Final published version
ISSN
0004-637X
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.