MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Two-Stage Power Conversion Architecture Suitable for Wide Range Input Voltage

Author(s)
Lim, Seungbum; Ranson, John David; Otten, David M.; Perreault, David J.
Thumbnail
DownloadLim Two-Stage.pdf (1.015Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents a merged-two-stage circuit topology suitable for either wide-range dc input voltage or ac line voltage at low-to-moderate power levels (e.g., up to 30 W). This two-stage topology is based on a soft-charged switched-capacitor preregulator/transformation stage and a high-frequency magnetic regulator stage. Soft charging of the switched capacitor circuit, zero voltage switching of the high-frequency regulator circuit, and time-based indirect current control are used to maintain high efficiency, high power density, and high power factor. The proposed architecture is applied to an LED driver circuit, and two implementations are demonstrated: a wide input voltage range dc-dc converter and a line interfaced ac-dc converter. The dc-dc converter shows 88%-96% efficiency at 30-W power across 25-200-V input voltage range, and the ac-dc converter achieves 88% efficiency with 0.93 power factor at 8.4-W average power. Contributions of this paper include: 1) demonstrating the value of a merged two-stage architecture to provide substantial design benefits in high-input voltage, low-power step down conversion applications, including both wide-range-input dc-dc and line-input ac-dc systems; 2) introduction of a multimode soft-charged SC stage for the merged architecture that enables compression of an 8:1 input voltage range into a 2:1 intermediate range, along with its implementation, loss considerations, and driving methods; and 3) merging of this topology with an resonant transition discontinuous-mode inverted buck stage and pseudocurrent control to enable step-down power conversion (e.g., for LED lighting) operating at greatly increased frequencies and reduced magnetics size than with more conventional approaches.
Date issued
2015-02
URI
http://hdl.handle.net/1721.1/96017
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
IEEE Transactions on Power Electronics
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Lim, Seungbum, John Ranson, David M. Otten, and David J. Perreault. “Two-Stage Power Conversion Architecture Suitable for Wide Range Input Voltage.” IEEE Trans. Power Electron. 30, no. 2 (February 2015): 805–816.
Version: Author's final manuscript
Other identifiers
INSPEC Accession Number: 14648204
ISSN
0885-8993
1941-0107

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.