Show simple item record

dc.contributor.authorLippow, Shaun M.
dc.contributor.authorMoon, Tae Seok
dc.contributor.authorBasu, Subhayu
dc.contributor.authorYoon, Sang-Hwal
dc.contributor.authorLi, Xiazhen
dc.contributor.authorChapman, Brad A.
dc.contributor.authorRobison, Keith
dc.contributor.authorLipovšek, Daša
dc.contributor.authorPrather, Kristala L. Jones
dc.date.accessioned2015-03-17T16:10:57Z
dc.date.available2015-03-17T16:10:57Z
dc.date.issued2010-12
dc.date.submitted2010-10
dc.identifier.issn10745521
dc.identifier.urihttp://hdl.handle.net/1721.1/96044
dc.description.abstractEngineered biosynthetic pathways have the potential to produce high-value molecules from inexpensive feedstocks, but a key limitation is engineering enzymes with high activity and specificity for new reactions. Here, we developed a method for combining structure-based computational protein design with library-based enzyme screening, in which inter-residue correlations favored by the design are encoded into a defined-sequence library. We validated this approach by engineering a glucose 6-oxidase enzyme for use in a proposed pathway to convert D-glucose into D-glucaric acid. The most active variant, identified after only one round of diversification and screening of only 10,000 wells, is approximately 400-fold more active on glucose than is the wild-type enzyme. We anticipate that this strategy will be broadly applicable to the discovery of new enzymes for engineered biological pathways.en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Young Investigator Program (Grant N000140510656)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Synthetic Biology Engineering Research Center. Grant EEC-0540879)en_US
dc.description.sponsorshipMIT Faculty Start-up Funden_US
dc.description.sponsorshipCodon Devices, Inc.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.chembiol.2010.10.012en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleEngineering Enzyme Specificity Using Computational Design of a Defined-Sequence Libraryen_US
dc.typeArticleen_US
dc.identifier.citationLippow, Shaun M., Tae Seok Moon, Subhayu Basu, Sang-Hwal Yoon, Xiazhen Li, Brad A. Chapman, Keith Robison, Daša Lipovšek, and Kristala L.J. Prather. “Engineering Enzyme Specificity Using Computational Design of a Defined-Sequence Library.” Chemistry & Biology 17, no. 12 (December 2010): 1306–1315. © 2010 Elsevier Ltd.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Synthetic Biology Centeren_US
dc.contributor.mitauthorPrather, Kristala L. Jonesen_US
dc.contributor.mitauthorMoon, Tae Seoken_US
dc.contributor.mitauthorYoon, Sang-Hwalen_US
dc.relation.journalChemistry and Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLippow, Shaun M.; Moon, Tae Seok; Basu, Subhayu; Yoon, Sang-Hwal; Li, Xiazhen; Chapman, Brad A.; Robison, Keith; Lipovšek, Daša; Prather, Kristala L.J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0437-3157
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record