MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Current issues in research on structure–property relationships in polymer nanocomposites

Author(s)
Jancar, J.; Douglas, J. F.; Starr, F. W.; Kumar, S. K.; Cassagnau, P.; Lesser, A. J.; Sternstein, S. S.; Buehler, Markus J.; ... Show more Show less
Thumbnail
DownloadJancar-2010-Current issues in re.pdf (3.381Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by-nc-nd/3.0/
Metadata
Show full item record
Abstract
The understanding of the basic physical relationships between nano-scale structural variables and the macroscale properties of polymer nanocomposites remains in its infancy. The primary objective of this article is to ascertain the state of the art regarding the understanding and prediction of the macroscale properties of polymers reinforced with nanometer-sized solid inclusions over a wide temperature range. We emphasize that the addition of nanoparticles with large specific surface area to polymer matrices leads to amplification of a number of rather distinct molecular processes resulting from interactions between chains and solid surfaces. This results in a “non-classical” response of these systems to mechanical and electro-optical excitations when measured on the macroscale. For example, nanoparticles are expected to be particularly effective at modifying the intrinsic nano-scale dynamic heterogeneity of polymeric glass-formation and, correspondingly, recent simulations indicate that both the strength of particle interaction with the polymer matrix and the particle concentration can substantially influence the dynamic fragility of polymer glass-formation, a measure of the strength of the temperature dependence of the viscosity or structural relaxation time. Another basic characteristic of nanoparticles in polymer matrices is the tendency for the particles to associate into extended structures that can dominate the rheological, viscoelastic and mechanical properties of the nanocomposite so that thermodynamic factors that effect nanoparticle dispersion can be crucially important. Opportunities to exploit knowledge gained from understanding biomechanics of hierarchical biological protein materials and potential applications in materials design and nanotechnology are among future research challenges. Research on nanocomposites formed from block copolymers and nanoparticles offers huge promise in molecular electronics and photovoltaics. The surface functionalization of nanoparticles by the grafting of polymer brushes is expected to play important role in the designing of novel organic/inorganic nanocomposite materials. The formation of bulk heterojunctions at the nanometer scale leads to efficient dissociation of the charge pairs generated under sunlight. Based on the presentations and discussion, we make recommendations for future work in this area by the physics, chemistry, and engineering communities.
Date issued
2010-05
URI
http://hdl.handle.net/1721.1/96049
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Polymer
Publisher
Elsevier
Citation
Jancar, J., J.F. Douglas, F.W. Starr, S.K. Kumar, P. Cassagnau, A.J. Lesser, S.S. Sternstein, and M.J. Buehler. “Current Issues in Research on Structure–property Relationships in Polymer Nanocomposites.” Polymer 51, no. 15 (July 2010): 3321–3343.
Version: Final published version
ISSN
00323861

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.