MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Diffusion of Particles in the Extracellular Matrix: The Effect of Repulsive Electrostatic Interactions

Author(s)
Stylianopoulos, Triantafyllos; Poh, Ming-Zher; Insin, Numpon; Bawendi, Moungi G.; Fukumura, Dai; Munn, Lance L.; Jain, Rakesh K.; ... Show more Show less
Thumbnail
DownloadStylianopoulos-2010-Diffusion of Particl.pdf (871.5Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Diffusive transport of macromolecules and nanoparticles in charged fibrous media is of interest in many biological applications, including drug delivery and separation processes. Experimental findings have shown that diffusion can be significantly hindered by electrostatic interactions between the diffusing particle and charged components of the extracellular matrix. The implications, however, have not been analyzed rigorously. Here, we present a mathematical framework to study the effect of charge on the diffusive transport of macromolecules and nanoparticles in the extracellular matrix of biological tissues. The model takes into account steric, hydrodynamic, and electrostatic interactions. We show that when the fiber size is comparable to the Debye length, electrostatic forces between the fibers and the particles result in slowed diffusion. However, as the fiber diameter increases the repulsive forces become less important. Our results explain the experimental observations that neutral particles diffuse faster than charged particles. Taken together, we conclude that optimal particles for delivery to tumors should be initially cationic to target the tumor vessels and then change to neutral charge after exiting the blood vessels.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/96065
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Chemistry
Journal
Biophysical Journal
Publisher
Elsevier
Citation
Stylianopoulos, Triantafyllos, Ming-Zher Poh, Numpon Insin, Moungi G. Bawendi, Dai Fukumura, Lance L. Munn, and Rakesh K. Jain. “Diffusion of Particles in the Extracellular Matrix: The Effect of Repulsive Electrostatic Interactions.” Biophysical Journal 99, no. 5 (September 2010): 1342–1349. © 2010 Biophysical Society.
Version: Final published version
ISSN
00063495
1542-0086

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.