MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development

Author(s)
Singh, Karun K.; Ge, Xuecai; Mao, Yingwei; Drane, Laurel; Meletis, Konstantinos; Samuels, Benjamin A.; Tsai, Li-Huei; ... Show more Show less
Thumbnail
DownloadSingh-2010-Dixdc1 Is a Critical.pdf (3.416Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The psychiatric illness risk gene Disrupted in Schizophrenia-1 (DISC1) plays an important role in brain development; however, it is unclear how DISC1 is regulated during cortical development. Here, we report that DISC1 is regulated during embryonic neural progenitor proliferation and neuronal migration through an interaction with DIX domain containing-1 (Dixdc1), the third mammalian gene discovered to contain a Disheveled-Axin (DIX) domain. We determined that Dixdc1 functionally interacts with DISC1 to regulate neural progenitor proliferation by co-modulating Wnt-GSK3β/β-catenin signaling. However, DISC1 and Dixdc1 do not regulate migration via this pathway. During neuronal migration, we discovered that phosphorylation of Dixdc1 by cyclin-dependent kinase 5 (Cdk5) facilitates its interaction with the DISC1-binding partner Ndel1. Furthermore, Dixdc1 phosphorylation and its interaction with DISC1/Ndel1 in vivo is required for neuronal migration. Together, these data reveal that Dixdc1 integrates DISC1 into Wnt-GSK3β/β-catenin-dependent and -independent signaling pathways during cortical development and further delineate how DISC1 contributes to neuropsychiatric disorders.
Date issued
2010-07
URI
http://hdl.handle.net/1721.1/96067
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory
Journal
Neuron
Publisher
Elsevier
Citation
Singh, Karun K., Xuecai Ge, Yingwei Mao, Laurel Drane, Konstantinos Meletis, Benjamin A. Samuels, and Li-Huei Tsai. “Dixdc1 Is a Critical Regulator of DISC1 and Embryonic Cortical Development.” Neuron 67, no. 1 (July 15, 2010): 33–48. © 2010 Elsevier Inc.
Version: Final published version
ISSN
08966273
1097-4199

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.