Show simple item record

dc.contributor.authorBose, Suman
dc.contributor.authorDas, Sarit K.
dc.contributor.authorKarp, Jeffrey Michael
dc.contributor.authorKarnik, Rohit
dc.date.accessioned2015-03-19T15:17:13Z
dc.date.available2015-03-19T15:17:13Z
dc.date.issued2010-12
dc.date.submitted2010-07
dc.identifier.issn00063495
dc.identifier.urihttp://hdl.handle.net/1721.1/96077
dc.description.abstractCell rolling on the vascular endothelium plays an important role in trafficking of leukocytes, stem cells, and cancer cells. We describe a semianalytical model of cell rolling that focuses on the microvillus as the unit of cell-substrate interaction and integrates microvillus mechanics, receptor clustering, force-dependent receptor-ligand kinetics, and cortical tension that enables incorporation of cell body deformation. Using parameters obtained from independent experiments, the model showed excellent agreement with experimental studies of neutrophil rolling on P-selectin and predicted different regimes of cell rolling, including spreading of the cells on the substrate under high shear. The cortical tension affected the cell-surface contact area and influenced the rolling velocity, and modulated the dependence of rolling velocity on microvillus stiffness. Moreover, at the same shear stress, microvilli of cells with higher cortical tension carried a greater load compared to those with lower cortical tension. We also used the model to obtain a scaling dependence of the contact radius and cell rolling velocity under different conditions of shear stress, cortical tension, and ligand density. This model advances theoretical understanding of cell rolling by incorporating cortical tension and microvillus extension into a versatile, semianalytical framework.en_US
dc.description.sponsorshipMassachusetts Institute of Technology (Neil and Jane Pappalardo Fellowship)en_US
dc.description.sponsorshipDeshpande Center for Technological Innovationen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER award 0952493)en_US
dc.description.sponsorshipAmerican Heart Association (Chemical and Biological Separations program, grant 0970178N)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant HL-095722)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant HL-097172)en_US
dc.language.isoen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.bpj.2010.10.038en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleA Semianalytical Model to Study the Effect of Cortical Tension on Cell Rollingen_US
dc.typeArticleen_US
dc.identifier.citationBose, Suman, Sarit K. Das, Jeffrey M. Karp, and Rohit Karnik. “A Semianalytical Model to Study the Effect of Cortical Tension on Cell Rolling.” Biophysical Journal 99, no. 12 (December 2010): 3870–3879. © 2010 Elsevier B.V.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorBose, Sumanen_US
dc.contributor.mitauthorKarp, Jeffrey Michaelen_US
dc.contributor.mitauthorKarnik, Rohiten_US
dc.relation.journalBiophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBose, Suman; Das, Sarit K.; Karp, Jeffrey M.; Karnik, Rohiten_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0588-9286
dc.identifier.orcidhttps://orcid.org/0000-0002-5921-3436
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record