MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Plastic Deformation of Semicrystalline Polyethylene under Extension, Compression, and Shear Using Molecular Dynamics Simulation

Author(s)
Kim, Jun Mo; Locker, Rebecca; Rutledge, Gregory C.
Thumbnail
Downloadma-2013-02297a_ms_rev.pdf (13.59Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Plastic deformation of the stack of alternating crystal and amorphous layers typical of semicrystalline polyethylene is studied by molecular dynamics simulation. A previous investigation of the semicrystalline layered stack undergoing isochoric extension1 is extended here to include several new modes of deformation: isostress extension, isostress compression, and isochoric shear, at 350 K and deformation rates of 5 × 107 and 5 × 106 s–1. The observed stress–strain responses are interpreted in terms of the underlying structural evolution of the material for each mode of deformation. Under tensile deformation, crystallographic slip was observed at low strains (0 < e3 < 0.08) regardless of deformation rate. Different yield mechanisms were observed for the different deformation rates. To explain the response at intermediate strains (0.08 < e3 < 0.26), we introduce the concept of “bridging entanglements”, which are temporary, physical bridges between crystal lamellae comprising entanglements involving chain segments belonging to different crystal lamellae. At high strains (e3 > 0.26), melting and recrystallization were observed at the slower deformation rate, while surface melting and cavitation were observed at the faster deformation rate. Under compressive deformation at the slower deformation rate, crystallographic slip was again observed at low strains. For the faster compressive deformation, an initial period of rapid stress growth at low strain was observed. This initial stress growth then transitions to a process of fine crystallographic slip at a strain of e3 = −0.005. At intermediate strains under compressive deformation, the release of bridging entanglements is observed for both strain rates. However, no melting or recrystallization phenomena were observed under compression, even at the highest strains simulated (e3 = −0.33). Under shear deformation, interlamellar slip was observed for both zx and zy shear (strain gradient parallel to stacking direction). Chain segments tend to stretch and align in the shear direction. Interestingly, under shear deformation this semicrystalline polyethylene exhibits transient behavior typical of non-Newtonian fluids.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/96081
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Macromolecules
Publisher
American Chemical Society (ACS)
Citation
Kim, Jun Mo, Rebecca Locker, and Gregory C. Rutledge. “Plastic Deformation of Semicrystalline Polyethylene Under Extension, Compression, and Shear Using Molecular Dynamics Simulation.” Macromolecules 47, no. 7 (April 8, 2014): 2515–2528.
Version: Author's final manuscript
ISSN
0024-9297
1520-5835

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.