MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132

Author(s)
Edbauer, Dieter; Neilson, Joel R.; Foster, Kelly A.; Wang, Chi-Fong; Seeburg, Daniel P.; Batterton, Matthew N.; Tada, Tomoko; Dolan, Bridget M.; Sharp, Phillip A.; Sheng, Morgan Hwa-Tze; ... Show more Show less
Thumbnail
DownloadEdbauer-2010-Regulation of Synapt.pdf (1.107Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that suppress translation of specific mRNAs. The miRNA machinery interacts with fragile X mental retardation protein (FMRP), which functions as translational repressor. We show that miR-125b and miR-132, as well as several other miRNAs, are associated with FMRP in mouse brain. miR-125b and miR-132 had largely opposing effects on dendritic spine morphology and synaptic physiology in hippocampal neurons. FMRP knockdown ameliorates the effect of miRNA overexpression on spine morphology. We identified NMDA receptor subunit NR2A as a target of miR-125b and show that NR2A mRNA is specifically associated with FMRP in brain. In hippocampal neurons, NR2A expression is negatively regulated through its 3′ UTR by FMRP, miR-125b, and Argonaute 1. Regulation of NR2A 3′UTR by FMRP depends in part on miR-125b. Because NMDA receptor subunit composition profoundly affects synaptic plasticity, these observations have implications for the pathophysiology of fragile X syndrome, in which plasticity is altered.
Date issued
2010-02
URI
http://hdl.handle.net/1721.1/96085
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Picower Institute for Learning and Memory; Koch Institute for Integrative Cancer Research at MIT
Journal
Neuron
Publisher
Elsevier B.V.
Citation
Edbauer, Dieter, Joel R. Neilson, Kelly A. Foster, Chi-Fong Wang, Daniel P. Seeburg, Matthew N. Batterton, Tomoko Tada, Bridget M. Dolan, Phillip A. Sharp, and Morgan Sheng. “Regulation of Synaptic Structure and Function by FMRP-Associated MicroRNAs miR-125b and miR-132.” Neuron 65, no. 3 (February 2010): 373–384. © 2010 Elsevier Inc.
Version: Final published version
ISSN
08966273

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.