MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Weak Identification in Maximum Likelihood: A Question of Information

Author(s)
Andrews, Isaiah; Mikusheva, Anna
Thumbnail
DownloadMikusheva_Weak identification.pdf (482.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
In this paper we connect the discrepancy between two estimates of Fisher information, one based on the quadratic variation of the score and the other based on the negative Hessian of the log-likelihood, to weak identification. Classical asymptotic approximations assume that these two estimates are asymptotically equivalent, but we show that this equivalence fails in many weakly identified models, which can distort the behavior of the MLE. Using a stylized DSGE model we show that the discrepancy between information estimates is large when identification is weak.
Date issued
2014-05
URI
http://hdl.handle.net/1721.1/96095
Department
Massachusetts Institute of Technology. Department of Economics
Journal
American Economic Review
Publisher
American Economic Association
Citation
Andrews, Isaiah, and Anna Mikusheva. “ Weak Identification in Maximum Likelihood: A Question of Information † .” American Economic Review 104, no. 5 (May 2014): 195–199.
Version: Final published version
ISSN
0002-8282

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.