Show simple item record

dc.contributor.authorEsser, Axel Thomas
dc.contributor.authorSmith, Kyle C.
dc.contributor.authorGowrishankar, Thiruvallur R.
dc.contributor.authorVasilkoski, Zlatko
dc.contributor.authorWeaver, James C.
dc.date.accessioned2015-03-20T14:56:13Z
dc.date.available2015-03-20T14:56:13Z
dc.date.issued2010-06
dc.date.submitted2009-06
dc.identifier.issn00063495
dc.identifier.urihttp://hdl.handle.net/1721.1/96115
dc.description.abstractConventional electroporation (EP) changes both the conductance and molecular permeability of the plasma membrane (PM) of cells and is a standard method for delivering both biologically active and probe molecules of a wide range of sizes into cells. However, the underlying mechanisms at the molecular and cellular levels remain controversial. Here we introduce a mathematical cell model that contains representative organelles (nucleus, endoplasmic reticulum, mitochondria) and includes a dynamic EP model, which describes formation, expansion, contraction, and destruction for the plasma and all organelle membranes. We show that conventional EP provides transient electrical pathways into the cell, sufficient to create significant intracellular fields. This emerging intracellular electrical field is a secondary effect due to EP and can cause transmembrane voltages at the organelles, which are large enough and long enough to gate organelle channels, and even sufficient, at some field strengths, for the poration of organelle membranes. This suggests an alternative to nanosecond pulsed electric fields for intracellular manipulations.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Graduate Research Fellowship)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant No. R01-GM63857)en_US
dc.description.sponsorshipAegis Industries, Inc.en_US
dc.language.isoen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.bpj.2010.02.035en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleMechanisms for the Intracellular Manipulation of Organelles by Conventional Electroporationen_US
dc.typeArticleen_US
dc.identifier.citationEsser, Axel T., Kyle C. Smith, T.R. Gowrishankar, Zlatko Vasilkoski, and James C. Weaver. “Mechanisms for the Intracellular Manipulation of Organelles by Conventional Electroporation.” Biophysical Journal 98, no. 11 (June 2010): 2506–2514. © 2010 Biophysical Society.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorEsser, Axel Thomasen_US
dc.contributor.mitauthorSmith, Kyle C.en_US
dc.contributor.mitauthorGowrishankar, Thiruvallur R.en_US
dc.contributor.mitauthorWeaver, James C.en_US
dc.relation.journalBiophysical Journalen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsEsser, Axel T.; Smith, Kyle C.; Gowrishankar, T.R.; Vasilkoski, Zlatko; Weaver, James C.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-9016-5962
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record