Show simple item record

dc.contributor.authorChua, Lynn
dc.contributor.authorGyarfas, Andras
dc.contributor.authorHossain, Chetak
dc.date.accessioned2015-03-20T16:14:47Z
dc.date.available2015-03-20T16:14:47Z
dc.date.issued2013
dc.date.submitted2013-06
dc.identifier.issn1687-9163
dc.identifier.issn1687-9171
dc.identifier.urihttp://hdl.handle.net/1721.1/96125
dc.description.abstractA coloring of the edges of the r-uniform complete hypergraph is a G[subscript r]-coloring if there is no rainbow simplex; that is, every set of r + l vertices contains two edges of the same color. The notion extends G[subscript 2]-colorings which are often called Gallai-colorings and originates from a seminal paper of Gallai. One well-known property of G[subscript 2]-colorings is that at least one color class has a spanning tree. J. Lehel and the senior author observed that this property does not hold for G[subscript r]-colorings and proposed to study f[subscript r](n), the size of the largest monochromatic component which can be found in every G[subscript r]-coloring of K[r over n], the complete r-uniform hypergraph. The previous remark says that f[subscript 2](n) = n, and in this note, we address the case r = 3. We prove that [(n + 3)/2] ≤ f[subscript 3](n) ≤ [4n/5], and this determines f[subscript 3](n) for n < 7. We also prove that f[subscript 3](7) = 6 by excluding certain 2-factors from the middle layer of the Boolean lattice on seven elements.en_US
dc.publisherHindawi Publishing Corporationen_US
dc.relation.isversionofhttp://dx.doi.org/10.1155/2013/929565en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/2.0en_US
dc.sourceHindawi Publishing Corporationen_US
dc.titleGallai-Colorings of Triples and 2-Factors of B[subscript 3]en_US
dc.typeArticleen_US
dc.identifier.citationChua, Lynn, Andras Gyarfas, and Chetak Hossain. “Gallai-Colorings of Triples and 2-Factors of B[subscript 3].” International Journal of Combinatorics 2013 (2013): 1–6.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorChua, Lynnen_US
dc.relation.journalInternational Journal of Combinatoricsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2015-03-19T11:35:02Z
dc.language.rfc3066en
dc.rights.holderCopyright © 2013 Lynn Chua et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dspace.orderedauthorsChua, Lynn; Gyarfas, Andras; Hossain, Chetaken_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record