MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

REVISITING THE ROLE OF M31 IN THE DYNAMICAL HISTORY OF THE MAGELLANIC CLOUDS

Author(s)
Kallivayalil, Nitya; Besla, Gurtina; Sanderson, Robyn Ellyn; Alcock, Charles
Thumbnail
DownloadKallivayalil-2009-REVISITING THE ROLE.pdf (461.0Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study the dynamics of the Magellanic Clouds in a model for the Local Group whose mass is constrained using the timing argument/two-body limit of the action principle. The goal is to evaluate the role of M31 in generating the high angular momentum orbit of the Clouds, a puzzle that has only been exacerbated by the latest Hubble Space Telescope proper motion measurements. We study the effects of varying the total Local Group mass, the relative mass of the Milky Way (MW) and M31, the proper motion of M31, and the proper motion of the Large Magellanic Cloud (LMC) on this problem. Over a large part of this parameter space, we find that tides from M31 are insignificant. For a range of LMC proper motions approximately 3σ higher than the mean and total Local Group mass >3.5 × 10[superscript 12] M ☉, M31 can provide a significant torque to the LMC orbit. However, if the LMC is bound to the MW, then M31 is found to have negligible effect on its motion, and the origin of the high angular momentum of the system remains a puzzle. Finally, we use the timing argument to calculate the total mass of the MW-LMC system based on the assumption that they are encountering each other for the first time, their previous perigalacticon being a Hubble time ago, obtaining M [subscript MW] + M[subscript LMC] = (8.7 ± 0.8) × 10[superscript 11] M ☉.
Date issued
2009-08
URI
http://hdl.handle.net/1721.1/96202
Department
Massachusetts Institute of Technology. Department of Physics; MIT Kavli Institute for Astrophysics and Space Research
Journal
Astrophysical Journal
Publisher
Institute of Physics/American Astronomical Society
Citation
Kallivayalil, Nitya, Gurtina Besla, Robyn Sanderson, and Charles Alcock. “REVISITING THE ROLE OF M31 IN THE DYNAMICAL HISTORY OF THE MAGELLANIC CLOUDS.” The Astrophysical Journal 700, no. 2 (July 7, 2009): 924–930. © 2009 American Astronomical Society.
Version: Final published version
ISSN
0004-637X
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.