MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis

Author(s)
Valastyan, Scott John; Reinhardt, Ferenc; Benaich, Nathan; Calogrias, Diana; Szász, Attila M.; Wang, Zhigang C.; Brock, Jane E.; Richardson, Andrea L.; Nathan Benaich; Weinberg, Robert A; ... Show more Show less
Thumbnail
DownloadValastyan-2009-A Pleiotropically Ac.pdf (2.573Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
MicroRNAs are well suited to regulate tumor metastasis because of their capacity to coordinately repress numerous target genes, thereby potentially enabling their intervention at multiple steps of the invasion-metastasis cascade. We identify a microRNA exemplifying these attributes, miR-31, whose expression correlates inversely with metastasis in human breast cancer patients. Overexpression of miR-31 in otherwise-aggressive breast tumor cells suppresses metastasis. We deploy a stable microRNA sponge strategy to inhibit miR-31 in vivo; this allows otherwise-nonaggressive breast cancer cells to metastasize. These phenotypes do not involve confounding influences on primary tumor development and are specifically attributable to miR-31-mediated inhibition of several steps of metastasis, including local invasion, extravasation or initial survival at a distant site, and metastatic colonization. Such pleiotropy is achieved via coordinate repression of a cohort of metastasis-promoting genes, including RhoA. Indeed, RhoA re-expression partially reverses miR-31-imposed metastasis suppression. These findings indicate that miR-31 uses multiple mechanisms to oppose metastasis.
Date issued
2009-06
URI
http://hdl.handle.net/1721.1/96204
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research; Koch Institute for Integrative Cancer Research at MIT
Journal
Cell
Publisher
Elsevier B.V.
Citation
Valastyan, Scott, Ferenc Reinhardt, Nathan Benaich, Diana Calogrias, Attila M. Szász, Zhigang C. Wang, Jane E. Brock, Andrea L. Richardson, and Robert A. Weinberg. “A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis.” Cell 137, no. 6 (June 2009): 1032–1046. © 2009 Elsevier Inc.
Version: Final published version
ISSN
00928674

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.