MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PROBING THE ACCRETION DISK AND CENTRAL ENGINE STRUCTURE OF NGC 4258 WITH SUZAKU AND XMM-NEWTON OBSERVATIONS

Author(s)
Reynolds, Christopher S.; Nowak, Michael A.; Markoff, Sera B.; Tueller, Jack; Wilms, Joern; Young, Andrew J.; ... Show more Show less
Thumbnail
DownloadReynolds-2009-PROBING THE ACCRETIO.pdf (357.3Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present an X-ray study of the low-luminosity active galactic nucleus (AGN) in NGC 4258 using data from Suzaku, XMM-Newton, and the Swift/Burst Alert Telescope survey. We find that signatures of X-ray reprocessing by cold gas are very weak in the spectrum of this Seyfert-2 galaxy; a weak, narrow fluorescent Kα emission line of cold iron is robustly detected in both the Suzaku and XMM-Newton spectra but at a level much below that of most other Seyfert-2 galaxies. We conclude that the circumnuclear environment of this AGN is very "clean" and lacks the Compton-thick obscuring torus of unified Seyfert schemes. From the narrowness of the iron line, together with evidence of line flux variability between the Suzaku and XMM-Newton observations, we constrain the line emitting region to be between 3 × 10[superscript 3] rg and 4 × 10[superscript 4] rg from the black hole. We show that the observed properties of the iron line can be explained if the line originates from the surface layers of a warped accretion disk. In particular, we present explicit calculations of the expected iron line from a disk warped by Lens-Thirring precession from a misaligned central black hole. Finally, the Suzaku data reveal clear evidence of large amplitude 2-10 keV variability on timescales of 50 ksec and smaller amplitude flares on timescales as short as 5-10 ksec. If associated with accretion disk processes, such rapid variability requires an origin in the innermost regions of the disk (r ≈ 10rg or less). Analysis of the difference spectrum between a high- and low-flux states suggests that the variable component of the X-ray emission is steeper and more absorbed than the average AGN emission, suggesting that the primary X-ray source and absorbing screen have a spatial structure on comparable scales. We note the remarkable similarity between the circumnuclear environment of NGC 4258 and another well studied low-luminosity AGN, M81*.
Date issued
2009-02
URI
http://hdl.handle.net/1721.1/96205
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
Astrophysical Journal
Publisher
Institute of Physics/American Astronomical Society
Citation
Reynolds, Christopher S., Michael A. Nowak, Sera Markoff, Jack Tueller, Joern Wilms, and Andrew J. Young. “ PROBING THE ACCRETION DISK AND CENTRAL ENGINE STRUCTURE OF NGC 4258 WITH SUZAKU AND XMM-NEWTON OBSERVATIONS .” The Astrophysical Journal 691, no. 2 (February 1, 2009): 1159–1167. © 2009 American Astronomical Society.
Version: Final published version
ISSN
0004-637X
1538-4357

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.