MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Alternative splicing regulates vesicular trafficking genes in cardiomyocytes during postnatal heart development

Author(s)
Giudice, Jimena; Xia, Zheng; Scavuzzo, Marissa A.; Ward, Amanda J.; Kalsotra, Auinash; Wang, Wei; Wehrens, Xander H. T.; Cooper, Thomas A.; Burge, Christopher B; Wang, Eric T; Li, Wei; ... Show more Show less
Thumbnail
DownloadBurge_Alternative splicing.pdf (3.553Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
During postnatal development the heart undergoes a rapid and dramatic transition to adult function through transcriptional and post-transcriptional mechanisms, including alternative splicing (AS). Here we perform deep RNA-sequencing on RNA from cardiomyocytes and cardiac fibroblasts to conduct a high-resolution analysis of transcriptome changes during postnatal mouse heart development. We reveal extensive changes in gene expression and AS that occur primarily between postnatal days 1 and 28. Cardiomyocytes and cardiac fibroblasts show reciprocal regulation of gene expression reflecting differences in proliferative capacity, cell adhesion functions and mitochondrial metabolism. We further demonstrate that AS plays a role in vesicular trafficking and membrane organization. These AS transitions are enriched among targets of two RNA-binding proteins, Celf1 and Mbnl1, which undergo developmentally regulated changes in expression. Vesicular trafficking genes affected by AS during normal development (when Celf1 is downregulated) show a reversion to neonatal splicing patterns after Celf1 re-expression in adults. Short-term Celf1 induction in adult animals results in disrupted transverse tubule organization and calcium handling. These results identify potential roles for AS in multiple aspects of postnatal heart maturation, including vesicular trafficking and intracellular membrane dynamics.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/96259
Department
Massachusetts Institute of Technology. Department of Biology; Koch Institute for Integrative Cancer Research at MIT
Journal
Nature Communications
Citation
Giudice, Jimena, Zheng Xia, Eric T. Wang, Marissa A. Scavuzzo, Amanda J. Ward, Auinash Kalsotra, Wei Wang, et al. “Alternative Splicing Regulates Vesicular Trafficking Genes in Cardiomyocytes During Postnatal Heart Development.” Nature Communications 5 (April 22, 2014).
Version: Author's final manuscript
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.