Show simple item record

dc.contributor.authorKonvalinka, Matjaz
dc.contributor.authorPak, Igor
dc.date.accessioned2015-03-31T18:01:45Z
dc.date.available2015-03-31T18:01:45Z
dc.date.issued2008-09
dc.date.submitted2007-10
dc.identifier.issn01968858
dc.identifier.issn1090-2074
dc.identifier.urihttp://hdl.handle.net/1721.1/96288
dc.description.abstractIn this paper we analyze O'Hara's partition bijection. We present three type of results. First, we show that O'Hara's bijection can be viewed geometrically as a certain scissor congruence type result. Second, we obtain a number of new complexity bounds, proving that O'Hara's bijection is efficient in several special cases and mildly exponential in general. Finally, we prove that for identities with finite support, the map of the O'Hara's bijection can be computed in polynomial time, i.e. much more efficiently than by O'Hara's construction.en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.aam.2008.06.005en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleGeometry and complexity of O'Hara's algorithmen_US
dc.typeArticleen_US
dc.identifier.citationKonvalinka, Matjaz, and Igor Pak. “Geometry and Complexity of O’Hara’s Algorithm.” Advances in Applied Mathematics 42, no. 2 (February 2009): 157–175. © 2008 Elsevier Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorKonvalinka, Matjazen_US
dc.relation.journalAdvances in Applied Mathematicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKonvalinka, Matjaz; Pak, Igoren_US
mit.licensePUBLISHER_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record