Show simple item record

dc.contributor.authorLoven, Jakob
dc.contributor.authorOrlando, David A.
dc.contributor.authorSigova, Alla A.
dc.contributor.authorLin, Charles Y.
dc.contributor.authorRahl, Peter B.
dc.contributor.authorBurge, Christopher B.
dc.contributor.authorLevens, David L.
dc.contributor.authorLee, Tong Ihn
dc.contributor.authorYoung, Richard A.
dc.date.accessioned2015-03-31T19:36:44Z
dc.date.available2015-03-31T19:36:44Z
dc.date.issued2012-10
dc.identifier.issn00928674
dc.identifier.urihttp://hdl.handle.net/1721.1/96292
dc.description.abstractGene expression analysis is a widely used and powerful method for investigating the transcriptional behavior of biological systems, for classifying cell states in disease, and for many other purposes. Recent studies indicate that common assumptions currently embedded in experimental and analytical practices can lead to misinterpretation of global gene expression data. We discuss these assumptions and describe solutions that should minimize erroneous interpretation of gene expression data from multiple analysis platforms.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant NIH HG002668)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (grant NIH CA146445)en_US
dc.description.sponsorshipAmerican Cancer Society (Postdoctoral Fellowship PF-11-042-01-DMC)en_US
dc.description.sponsorshipSwedish Research Council (Postdoctoral Fellowship VR-B0086301)en_US
dc.language.isoen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cell.2012.10.012en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceElsevieren_US
dc.titleRevisiting Global Gene Expression Analysisen_US
dc.typeArticleen_US
dc.identifier.citationLovén, Jakob, David A. Orlando, Alla A. Sigova, Charles Y. Lin, Peter B. Rahl, Christopher B. Burge, David L. Levens, Tong Ihn Lee, and Richard A. Young. “Revisiting Global Gene Expression Analysis.” Cell 151, no. 3 (October 2012): 476–482. © 2012 Elsevier Inc.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computational and Systems Biology Programen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.contributor.mitauthorLoven, Jakoben_US
dc.contributor.mitauthorOrlando, David A.en_US
dc.contributor.mitauthorAlla A. Sigovaen_US
dc.contributor.mitauthorLin, Charles Y.en_US
dc.contributor.mitauthorRahl, Peter B.en_US
dc.contributor.mitauthorBurge, Christopher B.en_US
dc.contributor.mitauthorLee, Tong Ihnen_US
dc.contributor.mitauthorYoung, Richard A.en_US
dc.relation.journalCellen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLovén, Jakob; Orlando, David A.; Sigova, Alla A.; Lin, Charles Y.; Rahl, Peter B.; Burge, Christopher B.; Levens, David L.; Lee, Tong Ihn; Young, Richard A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-8855-8647
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record