MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toxoplasma gondii Superinfection and Virulence during Secondary Infection Correlate with the Exact [ROP5 over ROP18] Allelic Combination

Author(s)
Camejo, Ana; Cordeiro, Cynthia; Julien, Lindsay; Grotenbreg, Gijsbert M.; Frickel, Eva-Maria; Young, Lucy; Ploegh, Hidde; Melo, Mariane Bandeira; Saeij, Jeroen; Jensen, Kirk D.; ... Show more Show less
Thumbnail
DownloadJensen-2015-Toxoplasma gondii Su.pdf (3.289Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The intracellular parasite Toxoplasma gondii infects a wide variety of vertebrate species globally. Infection in most hosts causes a lifelong chronic infection and generates immunological memory responses that protect the host against new infections. In regions where the organism is endemic, multiple exposures to T. gondii likely occur with great frequency, yet little is known about the interaction between a chronically infected host and the parasite strains from these areas. A widely used model to explore secondary infection entails challenge of chronically infected or vaccinated mice with the highly virulent type I RH strain. Here, we show that although vaccinated or chronically infected C57BL/6 mice are protected against the type I RH strain, they are not protected against challenge with most strains prevalent in South America or another type I strain, GT1. Genetic and genomic analyses implicated the parasite-secreted rhoptry effectors ROP5 and ROP18, which antagonize the host’s gamma interferon-induced immunity-regulated GTPases (IRGs), as primary requirements for virulence during secondary infection. ROP5 and ROP18 promoted parasite superinfection in the brains of challenged survivors. We hypothesize that superinfection may be an important mechanism to generate T. gondii strain diversity, simply because two parasite strains would be present in a single meal consumed by the feline definitive host. Superinfection may drive the genetic diversity of Toxoplasma strains in South America, where most isolates are IRG resistant, compared to North America, where most strains are IRG susceptible and are derived from a few clonal lineages. In summary, ROP5 and ROP18 promote Toxoplasma virulence during reinfection.
Date issued
2015-02
URI
http://hdl.handle.net/1721.1/96341
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research; Koch Institute for Integrative Cancer Research at MIT
Journal
mBio
Publisher
American Society for Microbiology
Citation
Jensen, Kirk D. C., Ana Camejo, Mariane B. Melo, Cynthia Cordeiro, Lindsay Julien, Gijsbert M. Grotenbreg, Eva-Maria Frickel, Hidde L. Ploegh, Lucy Young, and Jeroen P. J. Saeij. “ Toxoplasma Gondii Superinfection and Virulence During Secondary Infection Correlate with the Exact [ROP5 over ROP18] Allelic Combination .” mBio 6, no. 2 (February 24, 2015): e02280–14.
Version: Final published version
ISSN
2150-7511

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.