MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Molecular and Mesoscale Mechanisms of Osteogenesis Imperfecta Disease in Collagen Fibrils

Author(s)
Gautieri, Alfonso; Vesentini, Simone; Redaelli, Alberto; Uzel, Sebastien Guy Marcel; Buehler, Markus J
Thumbnail
DownloadGautieri-2009-Molecular and Mesosc.pdf (576.7Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder in collagen characterized by mechanically weakened tendon, fragile bones, skeletal deformities, and in severe cases, prenatal death. Although many studies have attempted to associate specific mutation types with phenotypic severity, the molecular and mesoscale mechanisms by which a single point mutation influences the mechanical behavior of tissues at multiple length scales remain unknown. We show by a hierarchy of full atomistic and mesoscale simulation that OI mutations severely compromise the mechanical properties of collagenous tissues at multiple scales, from single molecules to collagen fibrils. Mutations that lead to the most severe OI phenotype correlate with the strongest effects, leading to weakened intermolecular adhesion, increased intermolecular spacing, reduced stiffness, as well as a reduced failure strength of collagen fibrils. We find that these molecular-level changes lead to an alteration of the stress distribution in mutated collagen fibrils, causing the formation of stress concentrations that induce material failure via intermolecular slip. We believe that our findings provide insight into the microscopic mechanisms of this disease and lead to explanations of characteristic OI tissue features such as reduced mechanical strength and a lower cross-link density. Our study explains how single point mutations can control the breakdown of tissue at much larger length scales, a question of great relevance for a broad class of genetic diseases.
Date issued
2009-08
URI
http://hdl.handle.net/1721.1/96356
Department
Massachusetts Institute of Technology. Center for Computational Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Laboratory for Atomistic and Molecular Mechanics
Journal
Biophysical Journal
Publisher
Elsevier B.V.
Citation
Gautieri, Alfonso, Sebastien Uzel, Simone Vesentini, Alberto Redaelli, and Markus J. Buehler. “Molecular and Mesoscale Mechanisms of Osteogenesis Imperfecta Disease in Collagen Fibrils.” Biophysical Journal 97, no. 3 (August 2009): 857–865.
Version: Final published version
ISSN
00063495

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.