Show simple item record

dc.contributor.authorTaravat, Alireza
dc.contributor.authorPeronaci, Simone
dc.contributor.authorDel Frate, Fabio
dc.contributor.authorOppelt, Natascha
dc.contributor.authorProud, Simon R.
dc.date.accessioned2015-04-08T19:31:03Z
dc.date.available2015-04-08T19:31:03Z
dc.date.issued2015-02
dc.date.submitted2014-09
dc.identifier.issn2072-4292
dc.identifier.urihttp://hdl.handle.net/1721.1/96473
dc.description.abstractA multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm) with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery.en_US
dc.language.isoen_US
dc.publisherMDPI AGen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/rs70201529en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMDPI Publishingen_US
dc.titleMultilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Maskingen_US
dc.typeArticleen_US
dc.identifier.citationTaravat, Alireza, Simon Proud, Simone Peronaci, Fabio Del Frate, and Natascha Oppelt. “Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking.” Remote Sensing 7, no. 2 (February 2015): 1529–1539.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorProud, Simon Richarden_US
dc.relation.journalRemote Sensingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsTaravat, Alireza; Proud, Simon; Peronaci, Simone; Del Frate, Fabio; Oppelt, Nataschaen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record