dc.contributor.author | Vielma, Juan Pablo | |
dc.date.accessioned | 2015-04-08T20:35:46Z | |
dc.date.available | 2015-04-08T20:35:46Z | |
dc.date.issued | 2015-02 | |
dc.date.submitted | 2014-07 | |
dc.identifier.issn | 0036-1445 | |
dc.identifier.issn | 1095-7200 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/96480 | |
dc.description.abstract | A wide range of problems can be modeled as Mixed Integer Linear Programming (MIP) problems using standard formulation techniques. However, in some cases the resulting MIP can be either too weak or too large to be effectively solved by state of the art solvers. In this survey we review advanced MIP formulation techniques that result in stronger and/or smaller formulations for a wide class of problems. | en_US |
dc.language.iso | en_US | |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1137/130915303 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Society for Industrial and Applied Mathematics | en_US |
dc.title | Mixed Integer Linear Programming Formulation Techniques | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Vielma, Juan Pablo. “Mixed Integer Linear Programming Formulation Techniques.” SIAM Review 57, no. 1 (January 2015): 3–57. © 2015 Society for Industrial and Applied Mathematics | en_US |
dc.contributor.department | Sloan School of Management | en_US |
dc.contributor.mitauthor | Vielma, Juan Pablo | en_US |
dc.relation.journal | SIAM Review | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Vielma, Juan Pablo | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-4335-7248 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |