MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Coherent Exciton Dynamics in Supramolecular Light-Harvesting Nanotubes Revealed by Ultrafast Quantum Process Tomography

Author(s)
Arias, Dylan H.; Eisele, Dorthe M.; Krich, Jacob J.; Bawendi, Moungi G.; Yuen, Joel; Steiner, Colby Peyton; Nelson, Keith Adam; Aspuru-Guzik, Alan; ... Show more Show less
Thumbnail
DownloadBawendi_Coherent exciton.pdf (514.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Long-lived exciton coherences have been recently observed in photosynthetic complexes via ultrafast spectroscopy, opening exciting possibilities for the study and design of coherent exciton transport. Yet, ambiguity in the spectroscopic signals has led to arguments against interpreting them in terms of exciton dynamics, demanding more stringent tests. We propose a novel strategy, quantum process tomography (QPT), for ultrafast spectroscopy and apply it to reconstruct the evolving quantum state of excitons in double-walled supramolecular light-harvesting nanotubes at room temperature from eight narrowband transient grating experiments. Our analysis reveals the absence of nonsecular processes, unidirectional energy transfer from the outer to the inner wall exciton states, and coherence between those states lasting about 150 fs, indicating weak electronic coupling between the walls. Our work constitutes the first experimental QPT in a “warm” and complex system and provides an elegant scheme to maximize information from ultrafast spectroscopy experiments.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/96517
Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
ACS Nano
Publisher
American Chemical Society (ACS)
Citation
Yuen-Zhou, Joel, Dylan H. Arias, Dorthe M. Eisele, Colby P. Steiner, Jacob J. Krich, Moungi G. Bawendi, Keith A. Nelson, and Alan Aspuru-Guzik. “Coherent Exciton Dynamics in Supramolecular Light-Harvesting Nanotubes Revealed by Ultrafast Quantum Process Tomography.” ACS Nano 8, no. 6 (June 24, 2014): 5527–5534.
Version: Original manuscript
ISSN
1936-0851
1936-086X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.