MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reproducible Automated Phosphopeptide Enrichment Using Magnetic TiO 2 and Ti-IMAC

Author(s)
Tape, Christopher; Worboys, Jonathan D.; Sinclair, John; Gourlay, Robert; Vogt, Janis; McMahon, Kelly M.; Trost, Matthias; Lauffenburger, Douglas A.; Lamont, Douglas J.; Jørgensen, Claus; ... Show more Show less
Thumbnail
DownloadTape-2014-Reproducible automated.pdf (2.189Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Reproducible, comprehensive phosphopeptide enrichment is essential for studying phosphorylation-regulated processes. Here, we describe the application of hyper-porous magnetic TiO2 and Ti-IMAC microspheres for uniform automated phosphopeptide enrichment. Combining magnetic microspheres with a magnetic particle-handling robot enables rapid (45 min), reproducible (r2 ≥ 0.80) and high-fidelity (>90% purity) phosphopeptide purification in a 96-well format. Automated phosphopeptide enrichment demonstrates reproducible synthetic phosphopeptide recovery across 2 orders of magnitude, “well-to-well” quantitative reproducibility indistinguishable to internal SILAC standards, and robust “plate-to-plate” reproducibility across 5 days of independent enrichments. As a result, automated phosphopeptide enrichment enables statistical analysis of label-free phosphoproteomic samples in a high-throughput manner. This technique uses commercially available, off-the-shelf components and can be easily adopted by any laboratory interested in phosphoproteomic analysis. We provide a free downloadable automated phosphopeptide enrichment program to facilitate uniform interlaboratory collaboration and exchange of phosphoproteomic data sets.
Date issued
2014-10
URI
http://hdl.handle.net/1721.1/96693
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Analytical Chemistry
Publisher
American Chemical Society (ACS)
Citation
Tape, Christopher J., Jonathan D. Worboys, John Sinclair, Robert Gourlay, Janis Vogt, Kelly M. McMahon, Matthias Trost, Douglas A. Lauffenburger, Douglas J. Lamont, and Claus Jørgensen. “ Reproducible Automated Phosphopeptide Enrichment Using Magnetic TiO 2 and Ti-IMAC .” Analytical Chemistry 86, no. 20 (October 21, 2014): 10296–10302. © 2014 American Chemical Society.
Version: Final published version
ISSN
0003-2700
1520-6882

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.