MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toward More Accurate Ancestral Protein Genotype-Phenotype Reconstructions with the Use of Species Tree-Aware Gene Trees

Author(s)
Groussin, Mathieu; Hobbs, Joanne K.; Szöllősi, Gergely J.; Gribaldo, Simonetta; Arcus, Vickery L.; Gouy, Manolo; ... Show more Show less
Thumbnail
DownloadGroussin-2014-Toward More Accurate.pdf (352.7Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
The resurrection of ancestral proteins provides direct insight into how natural selection has shaped proteins found in nature. By tracing substitutions along a gene phylogeny, ancestral proteins can be reconstructed in silico and subsequently synthesized in vitro. This elegant strategy reveals the complex mechanisms responsible for the evolution of protein functions and structures. However, to date, all protein resurrection studies have used simplistic approaches for ancestral sequence reconstruction (ASR), including the assumption that a single sequence alignment alone is sufficient to accurately reconstruct the history of the gene family. The impact of such shortcuts on conclusions about ancestral functions has not been investigated. Here, we show with simulations that utilizing information on species history using a model that accounts for the duplication, horizontal transfer, and loss (DTL) of genes statistically increases ASR accuracy. This underscores the importance of the tree topology in the inference of putative ancestors. We validate our in silico predictions using in vitro resurrection of the LeuB enzyme for the ancestor of the Firmicutes, a major and ancient bacterial phylum. With this particular protein, our experimental results demonstrate that information on the species phylogeny results in a biochemically more realistic and kinetically more stable ancestral protein. Additional resurrection experiments with different proteins are necessary to statistically quantify the impact of using species tree-aware gene trees on ancestral protein phenotypes. Nonetheless, our results suggest the need for incorporating both sequence and DTL information in future studies of protein resurrections to accurately define the genotype–phenotype space in which proteins diversify.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/96705
Department
Massachusetts Institute of Technology. Department of Biological Engineering
Journal
Molecular Biology and Evolution
Publisher
Oxford University Press
Citation
Groussin, M., J. K. Hobbs, G. J. Szoll si, S. Gribaldo, V. L. Arcus, and M. Gouy. “Toward More Accurate Ancestral Protein Genotype-Phenotype Reconstructions with the Use of Species Tree-Aware Gene Trees.” Molecular Biology and Evolution 32, no. 1 (November 4, 2014): 13–22.
Version: Final published version
ISSN
0737-4038
1537-1719

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.