MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanochemical basis of protein degradation by a double-ring AAA+ machine

Author(s)
Iosefson, Ohad; Olivares, Adrian O.; Baker, Tania; Nager, Andrew Ross; Sauer, Robert T
Thumbnail
DownloadBaker_Mechanochemical basis.pdf (1.187Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Molecular machines containing double or single AAA+ rings power energy-dependent protein degradation and other critical cellular processes, including disaggregation and remodeling of macromolecular complexes. How the mechanical activities of double-ring and single-ring AAA+ enzymes differ is unknown. Using single-molecule optical trapping, we determine how the double-ring ​ClpA enzyme from Escherichia coli, in complex with the ​ClpP peptidase, mechanically degrades proteins. We demonstrate that ​ClpA unfolds some protein substrates substantially faster than does the single-ring ​ClpX enzyme, which also degrades substrates in collaboration with ​ClpP. We find that ​ClpA is a slower polypeptide translocase and that it moves in physical steps that are smaller and more regular than steps taken by ​ClpX. These direct measurements of protein unfolding and translocation define the core mechanochemical behavior of a double-ring AAA+ machine and provide insight into the degradation of proteins that unfold via metastable intermediates.
Date issued
2014-09
URI
http://hdl.handle.net/1721.1/96709
Department
Massachusetts Institute of Technology. Department of Biology
Journal
Nature Structural & Molecular Biology
Publisher
Nature Publishing Group
Citation
Olivares, Adrian O, Andrew R Nager, Ohad Iosefson, Robert T Sauer, and Tania A Baker. “Mechanochemical Basis of Protein Degradation by a Double-Ring AAA+ Machine.” Nature Structural & Molecular Biology 21, no. 10 (September 7, 2014): 871–875.
Version: Author's final manuscript
ISSN
1545-9993
1545-9985

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.