Show simple item record

dc.contributor.authorCeliz, A. D.
dc.contributor.authorSmith, J. G. W.
dc.contributor.authorPatel, A. K.
dc.contributor.authorAnderson, Daniel Griffith
dc.contributor.authorBarrett, D. A.
dc.contributor.authorYoung, L. E.
dc.contributor.authorDavies, Martyn C.
dc.contributor.authorDenning, C.
dc.contributor.authorAlexander, Morgan R.
dc.contributor.authorLanger, Robert S
dc.date.accessioned2015-04-23T20:09:05Z
dc.date.available2015-04-23T20:09:05Z
dc.date.issued2014-05
dc.date.submitted2014-02
dc.identifier.issn2047-4830
dc.identifier.issn2047-4849
dc.identifier.urihttp://hdl.handle.net/1721.1/96769
dc.description.abstractMaterials discovery provides the opportunity to identify novel materials that are tailored to complex biological environments by using combinatorial mixing of monomers to form large libraries of polymers as micro arrays. The materials discovery approach is predicated on the use of the largest chemical diversity possible, yet previous studies into human pluripotent stem cell (hPSC) response to polymer microarrays have been limited to 20 or so different monomer identities in each study. Here we show that it is possible to print and assess cell adhesion of 141 different monomers in a microarray format. This provides access to the largest chemical space to date, allowing us to meet the regenerative medicine challenge to provide scalable synthetic culture ware. This study identifies new materials suitable for hPSC expansion that could not have been predicted from previous knowledge of cell-material interactions.en_US
dc.description.sponsorshipRoyal Society (Great Britain) (Wolfson Research Merit Award)en_US
dc.description.sponsorshipWellcome Trust (London, England)en_US
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC (grant number EP/H045384/1))en_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c4bm00054den_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceRoyal Society of Chemistryen_US
dc.titleChemically diverse polymer microarrays and high throughput surface characterisation: a method for discovery of materials for stem cell cultureen_US
dc.typeArticleen_US
dc.identifier.citationCeliz, A. D., J. G. W. Smith, A. K. Patel, R. Langer, D. G. Anderson, D. A. Barrett, L. E. Young, M. C. Davies, C. Denning, and M. R. Alexander. “Chemically Diverse Polymer Microarrays and High Throughput Surface Characterisation: a Method for Discovery of Materials for Stem Cell Culture.” Biomater. Sci. 2, no. 11 (2014): 1604–1611.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorLanger, Roberten_US
dc.contributor.mitauthorAnderson, Daniel Griffithen_US
dc.relation.journalBiomaterials Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCeliz, A. D.; Smith, J. G. W.; Patel, A. K.; Langer, R.; Anderson, D. G.; Barrett, D. A.; Young, L. E.; Davies, M. C.; Denning, C.; Alexander, M. R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record