Show simple item record

dc.contributor.authorHuang, Ling
dc.contributor.authorLi, Qing-Jie
dc.contributor.authorShan, Zhi-Wei
dc.contributor.authorLi, Ju
dc.contributor.authorMa, Evan
dc.contributor.authorSun, Jun, 1975-
dc.date.accessioned2015-04-30T14:29:24Z
dc.date.available2015-04-30T14:29:24Z
dc.date.issued2011-11
dc.date.submitted2011-05
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/96857
dc.description.abstractBecause of crystal symmetry, body centred cubic (BCC) metals have large differences in lattice friction between screw and edge dislocations, and manifest generally different mechanical behaviours from face centred cubic (FCC) metals. Although mechanical annealing (significant drop in stored dislocation density in response to applied stress) has been observed in FCC metals, it has not been observed in BCC metals so far. Here we show that significant mechanical annealing does occur in BCC Mo pillars, when their diameters decrease to hundreds of nanometers. In addition, there exists a critical diameter for focused ion beam milled pillars, below which the strengthening exponent increases dramatically, from ~0.3 to ~1. Thus, a new regime of size effects in BCC metals is discovered that converges to that of FCC metals, revealing deep connection in the dislocation dynamics of the two systems.en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (Grant 50925104)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (Grant 50720145101)en_US
dc.description.sponsorshipNational Natural Science Foundation (China) (Grant 50831004)en_US
dc.description.sponsorshipNational Basic Research Program of China (973 Program) (Grant 2010CB631003)en_US
dc.description.sponsorshipNational Basic Research Program of China (973 Program) (Grant 2012CB619402)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CMMI-0728069)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMR-1008104)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMR-1120901)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (FA9550-08-1-0325)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms1557en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleA new regime for mechanical annealing and strong sample-size strengthening in body centred cubic molybdenumen_US
dc.typeArticleen_US
dc.identifier.citationHuang, Ling, Qing-Jie Li, Zhi-Wei Shan, Ju Li, Jun Sun, and Evan Ma. “A New Regime for Mechanical Annealing and Strong Sample-Size Strengthening in Body Centred Cubic Molybdenum.” Nature Communications 2 (November 22, 2011): 547.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorLi, Juen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHuang, Ling; Li, Qing-Jie; Shan, Zhi-Wei; Li, Ju; Sun, Jun; Ma, Evanen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record