Simple battery armor to protect against gastrointestinal injury from accidental ingestion
Author(s)
Laulicht, Bryan E.; Deshpande, Vikram; Karp, Jeffrey Michael; Langer, Robert S; Traverso, Carlo Giovanni
DownloadLaulicht-2014-Simple battery armor.pdf (1.307Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
Inadvertent battery ingestion in children and the associated morbidity and mortality results in thousands of emergency room visits every year. Given the risk for serious electrochemical burns within hours of ingestion, the current standard of care for the treatment of batteries in the esophagus is emergent endoscopic removal. Safety standards now regulate locked battery compartments in toys, which have resulted in a modest reduction in inadvertent battery ingestion; specifically, 3,461 ingestions were reported in 2009, and 3,366 in 2013. Aside from legislation, minimal technological development has taken place at the level of the battery to limit injury. We have constructed a waterproof, pressure-sensitive coating, harnessing a commercially available quantum tunneling composite. Quantum tunneling composite coated (QTCC) batteries are nonconductive in the low-pressure gastrointestinal environment yet conduct within the higher pressure of standard battery housings. Importantly, this coating technology enables most battery-operated equipment to be powered without modification. If these new batteries are swallowed, they limit the external electrolytic currents responsible for tissue injury. We demonstrate in a large-animal model a significant decrease in tissue injury with QTCC batteries compared with uncoated control batteries. In summary, here we describe a facile approach to increasing the safety of batteries by minimizing the risk for electrochemical burn if the batteries are inadvertently ingested, without the need for modification of most battery-powered devices.
Date issued
2014-11Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Chemical Engineering; Koch Institute for Integrative Cancer Research at MITJournal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Laulicht, Bryan, Giovanni Traverso, Vikram Deshpande, Robert Langer, and Jeffrey M. Karp. “Simple Battery Armor to Protect Against Gastrointestinal Injury from Accidental Ingestion.” Proceedings of the National Academy of Sciences 111, no. 46 (November 3, 2014): 16490–16495.
Version: Final published version
ISSN
0027-8424
1091-6490