MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Protein kinase A regulates gene-specific translational adaptation in differentiating yeast

Author(s)
Vaidyanathan, Pavanapuresan P.; Zinshteyn, Boris; Thompson, Mary Katherine; Gilbert, Wendy
Thumbnail
DownloadVaidyanathan-2014-Protein kinase A reg.pdf (2.965Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
Cellular differentiation is driven by coordinately regulated changes in gene expression. Recent discoveries suggest that translation contributes as much as transcription to regulating protein abundance, but the role of translational regulation in cellular differentiation is largely unexplored. Here we investigate translational reprogramming in yeast during cellular adaptation to the absence of glucose, a stimulus that induces invasive filamentous differentiation. Using ribosome footprint profiling and RNA sequencing to assay gene-specific translation activity genome-wide, we show that prolonged glucose withdrawal is accompanied by gene-specific changes in translational efficiency that significantly affect expression of the majority of genes. Notably, transcripts from a small minority (<5%) of genes make up the majority of translating mRNA in both rapidly dividing and starved differentiating cells, and the identities of these highly translated messages are almost nonoverlapping between conditions. Furthermore, these two groups of messages are subject to condition-dependent translational privilege. Thus the “housekeeping” process of translation does not stay constant during cellular differentiation but is highly adapted to different growth conditions. By comparing glucose starvation to growth-attenuating stresses that do not induce invasive filamentation, we distinguish a glucose-specific translational response mediated through signaling by protein kinase A (PKA). Together, these findings reveal a high degree of growth-state specialization of the translatome and identify PKA as an important regulator of gene-specific translation activity.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/96901
Department
Massachusetts Institute of Technology. Department of Biology
Journal
RNA
Publisher
Cold Spring Harbor Laboratory Press
Citation
Vaidyanathan, P. P., B. Zinshteyn, M. K. Thompson, and W. V. Gilbert. “Protein Kinase A Regulates Gene-Specific Translational Adaptation in Differentiating Yeast.” RNA 20, no. 6 (April 23, 2014): 912–922.
Version: Final published version
ISSN
1355-8382
1469-9001

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.