Show simple item record

dc.contributor.authorMarinan, Anne D.
dc.contributor.authorBarg, Andrew
dc.contributor.authorCahoy, Kerri
dc.contributor.authorNovak, Benjamin G.
dc.contributor.authorKerr, Caitlin E.
dc.contributor.authorWebber, Matthew William
dc.contributor.authorFalkenburg, Grant E.
dc.contributor.authorNguyen, Tam T
dc.date.accessioned2015-05-04T18:59:45Z
dc.date.available2015-05-04T18:59:45Z
dc.date.issued2013-12
dc.date.submitted2013-07
dc.identifier.issn1932-5150
dc.identifier.issn1932-5134
dc.identifier.urihttp://hdl.handle.net/1721.1/96908
dc.description.abstractTo meet the high contrast requirement of 1×10[superscript −10] to image an Earth-like planet around a sun-like star, space telescopes equipped with coronagraphs require wavefront control systems. Deformable mirrors (DMs) are a key element of a wavefront control system, as they correct for imperfections, thermal distortions, and diffraction that would otherwise corrupt the wavefront and ruin the contrast. The goal of the CubeSat DM technology demonstration mission is to test the ability of a microelectromechanical system (MEMS) DM to perform wavefront control on-orbit on a nanosatellite platform. We consider two approaches for an MEMS DM technology demonstration payload that will fit within the mass, power, and volume constraints of a CubeSat: (1) a Michelson interferometer and (2) a Shack-Hartmann wavefront sensor. We clarify the constraints on the payload based on the resources required for supporting CubeSat subsystems drawn from subsystems that we have developed for a different CubeSat flight project. We discuss results from payload laboratory prototypes and their utility in defining mission requirements.en_US
dc.language.isoen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/1.JMM.13.1.011105en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleWavefront control in space with MEMS deformable mirrors for exoplanet direct imagingen_US
dc.typeArticleen_US
dc.identifier.citationCahoy, Kerri L., Anne D. Marinan, Benjamin Novak, Caitlin Kerr, Tam Nguyen, Matthew Webber, Grant Falkenburg, and Andrew Barg. “Wavefront Control in Space with MEMS Deformable Mirrors for Exoplanet Direct Imaging.” Journal of Micro/Nanolithography, MEMS, and MOEMS 13, no. 1 (December 2, 2013): 011105.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorCahoy, Kerrien_US
dc.contributor.mitauthorMarinan, Anne D.en_US
dc.contributor.mitauthorNovak, Benjamin G.en_US
dc.contributor.mitauthorKerr, Caitlin E.en_US
dc.contributor.mitauthorNguyen, Tam T.en_US
dc.contributor.mitauthorWebber, Matthew Williamen_US
dc.contributor.mitauthorFalkenburg, Grant E.en_US
dc.contributor.mitauthorBarg, Andrewen_US
dc.relation.journalJournal of Micro/Nanolithography, MEMS, and MOEMSen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCahoy, Kerri L.; Marinan, Anne D.; Novak, Benjamin; Kerr, Caitlin; Nguyen, Tam; Webber, Matthew; Falkenburg, Grant; Barg, Andrewen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5391-9844
dc.identifier.orcidhttps://orcid.org/0000-0002-7791-5124
dc.identifier.orcidhttps://orcid.org/0000-0001-9005-2493
dc.identifier.orcidhttps://orcid.org/0000-0001-5601-0978
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record