MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biocompatible Alginate Microgel Particles as Heteronucleants and Encapsulating Vehicles for Hydrophilic and Hydrophobic Drugs

Author(s)
Eral, Huseyin Burak; Lopez-Mejias, Vilmali; O'Mahony, Marcus; Myerson, Allan S. Trout, Bernhard L.; Myerson, Allan S.; Doyle, Patrick S.; ... Show more Show less
Thumbnail
DownloadDoyle_ Biocompatible Alginate with SI.pdf (2.169Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Biocompatible materials that can control crystallization while carrying large amounts of active pharmaceutical ingredients (APIs) with diverse chemical properties are in demand in industrial practice. In this study, we investigate the utility of biocompatible alginate (ALG) hydrogels as a rational material for crystallizing and encapsulating model APIs that present drastically different solubilities in water. Acetaminophen (ACM) and fenofibrate (FEN) are utilized as the model hydrophilic and hydrophobic moieties, respectively. ALG hydrogels with different ALG concentrations (hence different mesh sizes) are utilized as heteronucleants to control the nucleation kinetics of ACM from solution. ALG hydrogels with smaller mesh sizes showed faster nucleation kinetics. We hypothesize that this behavior is due to the interplay between the polymer–solute interactions and the mesh-induced confinement effects. The loading of ACM into hydrogels by equilibrium partitioning is quantified and found to be inversely proportional to ALG concentration. For hydrophobic model APIs, loading via equilibrium partitioning is inefficient; hence, we suggest emulsion-laden hydrogels where emulsion droplets are encapsulated inside the hydrogel matrix. The incorporation of emulsion droplets inside hydrogels enables the high loading of the hydrophobic API leveraging the high solubility of the hydrophobic API in the dispersed emulsion droplets. By carefully choosing the emulsification method and the dispersed phase, we demonstrate significant loading (up to ∼80% w/w) and crystallization of the stable form of FEN. Our results provide new insights for designing biocompatible nucleation-active materials capable of carrying industrially significant amounts of water-soluble and insoluble APIs in the crystalline form.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/96912
Department
Novartis-MIT Center for Continuous Manufacturing; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Crystal Growth & Design
Publisher
American Chemical Society (ACS)
Citation
Eral, Huseyin Burak, Vilmali Lopez-Mejias, Marcus O’Mahony, Bernhard L. Trout, Allan S. Myerson, and Patrick S. Doyle. “Biocompatible Alginate Microgel Particles as Heteronucleants and Encapsulating Vehicles for Hydrophilic and Hydrophobic Drugs.” Crystal Growth & Design 14, no. 4 (April 2, 2014): 2073–2082.
Version: Author's final manuscript
ISSN
1528-7483
1528-7505

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.