Show simple item record

dc.contributor.authorCampbell, Trevor David
dc.contributor.authorLiu, Miao
dc.contributor.authorKulis, Brian
dc.contributor.authorHow, Jonathan P.
dc.contributor.authorCarin, Lawrence
dc.date.accessioned2015-05-12T15:24:15Z
dc.date.available2015-05-12T15:24:15Z
dc.date.issued2013
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/1721.1/96963
dc.description.abstractThis paper presents a novel algorithm, based upon the dependent Dirichlet process mixture model (DDPMM), for clustering batch-sequential data containing an unknown number of evolving clusters. The algorithm is derived via a low-variance asymptotic analysis of the Gibbs sampling algorithm for the DDPMM, and provides a hard clustering with convergence guarantees similar to those of the k-means algorithm. Empirical results from a synthetic test with moving Gaussian clusters and a test with real ADS-B aircraft trajectory data demonstrate that the algorithm requires orders of magnitude less computational time than contemporary probabilistic and hard clustering algorithms, while providing higher accuracy on the examined datasets.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award IIS-1217433)en_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N000141110688)en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.relation.isversionofhttp://papers.nips.cc/paper/5094-dynamic-clustering-via-asymptotics-of-the-dependent-dirichlet-process-mixtureen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceAdvances in Neural Information Processing Systemsen_US
dc.titleDynamic clustering via asymptotics of the dependent Dirichlet process mixtureen_US
dc.typeArticleen_US
dc.identifier.citationCampbell, Trevor, Miao Liu, Brian Kulis, Jonathan P. How, and Lawrence Carin. "Dynamic clustering via asymptotics of the dependent Dirichlet process mixture." Advances in Neural Information Processing Systems (NIPS) 26, 2013.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorCampbell, Trevor Daviden_US
dc.contributor.mitauthorHow, Jonathan P.en_US
dc.relation.journalAdvances in Neural Information Processing Systems (NIPS) 26en_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCampbell, Trevor; Liu, Miao; Kulis, Brian; How, Jonathan P.; Carin, Lawrenceen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1499-0191
dc.identifier.orcidhttps://orcid.org/0000-0001-8576-1930
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record