MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Likelihood-informed dimension reduction for nonlinear inverse problems

Author(s)
Martin, J.; Cui, Tiangang; Marzouk, Youssef M.; Solonen, Antti; Spantini, Alessio
Thumbnail
DownloadMarzouk_Likelihood-informed.pdf (1.890Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The intrinsic dimensionality of an inverse problem is affected by prior information, the accuracy and number of observations, and the smoothing properties of the forward operator. From a Bayesian perspective, changes from the prior to the posterior may, in many problems, be confined to a relatively low-dimensional subspace of the parameter space. We present a dimension reduction approach that defines and identifies such a subspace, called the 'likelihood-informed subspace' (LIS), by characterizing the relative influences of the prior and the likelihood over the support of the posterior distribution. This identification enables new and more efficient computational methods for Bayesian inference with nonlinear forward models and Gaussian priors. In particular, we approximate the posterior distribution as the product of a lower-dimensional posterior defined on the LIS and the prior distribution marginalized onto the complementary subspace. Markov chain Monte Carlo sampling can then proceed in lower dimensions, with significant gains in computational efficiency. We also introduce a Rao−Blackwellization strategy that de-randomizes Monte Carlo estimates of posterior expectations for additional variance reduction. We demonstrate the efficiency of our methods using two numerical examples: inference of permeability in a groundwater system governed by an elliptic PDE, and an atmospheric remote sensing problem based on Global Ozone Monitoring System (GOMOS) observations.
Date issued
2014-10
URI
http://hdl.handle.net/1721.1/96973
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Inverse Problems
Publisher
IOP Publishing
Citation
Cui, T, J Martin, Y M Marzouk, A Solonen, and A Spantini. “Likelihood-Informed Dimension Reduction for Nonlinear Inverse Problems.” Inverse Problems 30, no. 11 (October 29, 2014): 114015.
Version: Author's final manuscript
ISSN
0266-5611
1361-6420

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.