Show simple item record

dc.contributor.authorChoi, Ickwon
dc.contributor.authorChung, Amy W.
dc.contributor.authorSuscovich, Todd J.
dc.contributor.authorRerks-Ngarm, Supachai
dc.contributor.authorPitisuttithum, Punnee
dc.contributor.authorNitayaphan, Sorachai
dc.contributor.authorKaewkungwal, Jaranit
dc.contributor.authorO'Connell, Robert J.
dc.contributor.authorFrancis, Donald
dc.contributor.authorRobb, Merlin L.
dc.contributor.authorMichael, Nelson L.
dc.contributor.authorKim, Jerome H.
dc.contributor.authorAlter, Galit
dc.contributor.authorAckerman, Margaret E.
dc.contributor.authorBailey-Kellogg, Chris
dc.date.accessioned2015-05-28T18:07:58Z
dc.date.available2015-05-28T18:07:58Z
dc.date.issued2015-04
dc.date.submitted2014-09
dc.identifier.issn1553-7358
dc.identifier.issn1553-734X
dc.identifier.urihttp://hdl.handle.net/1721.1/97099
dc.description.abstractThe adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.en_US
dc.description.sponsorshipU.S. Military HIV Research Programen_US
dc.description.sponsorshipCollaboration for AIDS Vaccine Discover (OPP1032817)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (3R01AI080289-02S1)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (5R01AI080289-03)en_US
dc.description.sponsorshipUnited States. Army Medical Research and Materiel Command (National Institute of Allergy and Infectious Diseases (U.S.) Interagency Agreement Y1-AI-2642-12)en_US
dc.description.sponsorshipHenry M. Jackson Foundation for the Advancement of Military Medicine (U.S.) (United States. Dept. of Defense Cooperative Agreement W81XWH-07-2-0067)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pcbi.1004185en_US
dc.rightsCreative Commons CC0en_US
dc.rights.urihttps://creativecommons.org/publicdomain/zero/1.0/en_US
dc.sourcePublic Library of Scienceen_US
dc.titleMachine Learning Methods Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 Vaccineesen_US
dc.typeArticleen_US
dc.identifier.citationChoi, Ickwon, Amy W. Chung, Todd J. Suscovich, Supachai Rerks-Ngarm, Punnee Pitisuttithum, Sorachai Nitayaphan, Jaranit Kaewkungwal, et al. “Machine Learning Methods Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 Vaccinees.” Edited by Thomas B Kepler. PLoS Comput Biol 11, no. 4 (April 13, 2015): e1004185.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentRagon Institute of MGH, MIT and Harvarden_US
dc.contributor.mitauthorAlter, Galiten_US
dc.relation.journalPLOS Computational Biologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsChoi, Ickwon; Chung, Amy W.; Suscovich, Todd J.; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayaphan, Sorachai; Kaewkungwal, Jaranit; O'Connell, Robert J.; Francis, Donald; Robb, Merlin L.; Michael, Nelson L.; Kim, Jerome H.; Alter, Galit; Ackerman, Margaret E.; Bailey-Kellogg, Chrisen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1570-9445
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record