Show simple item record

dc.contributor.authorToole, Jameson Lawrence
dc.contributor.authorLin, Yu-Ru
dc.contributor.authorMuehlegger, Erich
dc.contributor.authorShoag, Daniel
dc.contributor.authorGonzalez, Marta C.
dc.contributor.authorLazer, David
dc.date.accessioned2015-06-02T15:17:42Z
dc.date.available2015-06-02T15:17:42Z
dc.date.issued2015-05
dc.date.submitted2015-03
dc.identifier.issn1742-5689
dc.identifier.issn1742-5662
dc.identifier.urihttp://hdl.handle.net/1721.1/97149
dc.description.abstractCan data from mobile phones be used to observe economic shocks and their consequences at multiple scales? Here we present novel methods to detect mass layoffs, identify individuals affected by them and predict changes in aggregate unemployment rates using call detail records (CDRs) from mobile phones. Using the closure of a large manufacturing plant as a case study, we first describe a structural break model to correctly detect the date of a mass layoff and estimate its size. We then use a Bayesian classification model to identify affected individuals by observing changes in calling behaviour following the plant's closure. For these affected individuals, we observe significant declines in social behaviour and mobility following job loss. Using the features identified at the micro level, we show that the same changes in these calling behaviours, aggregated at the regional level, can improve forecasts of macro unemployment rates. These methods and results highlight promise of new data resources to measure microeconomic behaviour and improve estimates of critical economic indicators.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowshipen_US
dc.language.isoen_US
dc.publisherRoyal Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1098/rsif.2015.0185en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceTooleen_US
dc.titleTracking employment shocks using mobile phone dataen_US
dc.typeArticleen_US
dc.identifier.citationToole, J. L., Y.-R. Lin, E. Muehlegger, D. Shoag, M. C. Gonzalez, and D. Lazer. “Tracking Employment Shocks Using Mobile Phone Data.” Journal of The Royal Society Interface 12, no. 107 (April 29, 2015): 20150185–20150185.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Divisionen_US
dc.contributor.approverToole, Jameson Lawrenceen_US
dc.contributor.mitauthorToole, Jameson Lawrenceen_US
dc.contributor.mitauthorGonzalez, Marta C.en_US
dc.relation.journalJournal of The Royal Society Interfaceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsToole, J. L.; Lin, Y.-R.; Muehlegger, E.; Shoag, D.; Gonzalez, M. C.; Lazer, D.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8482-0318
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record