MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exponential Asymptotics for Line Solitons in Two-Dimensional Periodic Potentials

Author(s)
Nixon, Sean D.; Yang, Jianke; Akylas, Triantaphyllos R.
Thumbnail
DownloadAkylas_Exponential asymptotics.pdf (739.0Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
As a first step toward a fully two-dimensional asymptotic theory for the bifurcation of solitons from infinitesimal continuous waves, an analytical theory is presented for line solitons, whose envelope varies only along one direction, in general two-dimensional periodic potentials. For this two-dimensional problem, it is no longer viable to rely on a certain recurrence relation for going beyond all orders of the usual multiscale perturbation expansion, a key step of the exponential asymptotics procedure previously used for solitons in one-dimensional problems. Instead, we propose a more direct treatment which not only overcomes the recurrence-relation limitation, but also simplifies the exponential asymptotics process. Using this modified technique, we show that line solitons with any rational line slopes bifurcate out from every Bloch-band edge; and for each rational slope, two line-soliton families exist. Furthermore, line solitons can bifurcate from interior points of Bloch bands as well, but such line solitons exist only for a couple of special line angles due to resonance with the Bloch bands. In addition, we show that a countable set of multiline-soliton bound states can be constructed analytically. The analytical predictions are compared with numerical results for both symmetric and asymmetric potentials, and good agreement is obtained.
Date issued
2013-03
URI
http://hdl.handle.net/1721.1/97216
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Studies in Applied Mathematics
Publisher
Wiley Blackwell
Citation
Nixon, Sean D., T. R. Akylas, and Jianke Yang. “Exponential Asymptotics for Line Solitons in Two-Dimensional Periodic Potentials.” Studies in Applied Mathematics 131, no. 2 (March 19, 2013): 149–178.
Version: Author's final manuscript
ISSN
00222526
1467-9590

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.