MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stress-driven crystallization via shear-diffusion transformations in a metallic glass at very low temperatures

Author(s)
Mao, Yunwei; Li, Ju; Lo, Yu-Chieh; Qian, Xiaofeng; Ma, Evan
Thumbnail
DownloadPhysRevB.91.214103.pdf (2.001Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
At elevated temperatures, glasses crystallize via thermally activated diffusion. However, metallic glasses can also undergo deformation-induced crystallization at very low temperatures. Here we demonstrate the crystallization of Al[subscript 50]Fe[subscript 50] metallic glasses under cyclic deformation at 50 K using molecular dynamics simulations and reveal the underlying atomic-scale processes. We demonstrate that stress-driven nonaffine atomic rearrangements, or shear diffusion transformation (SDT) events, lead to successive metabasin-to-metabasin transitions and long-range ordering. We also illustrate that the nucleation and growth of the crystal proceed via collective attachment of ordered clusters, advancing the amorphous/crystal interface in an intermittent manner. The cooperative nature of the steplike crystallization is attributed to the large activation volume of Eshelby transformations which generate as a by-product nonaffine diffusive atomic displacements that accumulate over loading cycles. The dual nature of shear (affine) and diffusion (nonaffine) in low-temperature stress-driven SDT events thus unifies inelasticity with crystallization.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/97230
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Physical Review B
Publisher
American Physical Society
Citation
Mao, Yunwei, Ju Li, Yu-Chieh Lo, Xiaofeng Qian, and Evan Ma. “Stress-Driven Crystallization via Shear-Diffusion Transformations in a Metallic Glass at Very Low Temperatures.” Phys. Rev. B 91, no. 21 (June 2015). © 2015 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.