Show simple item record

dc.contributor.authorQiu, Bo
dc.contributor.authorTian, Zhiting
dc.contributor.authorVallabhaneni, Ajit
dc.contributor.authorLiao, Bolin
dc.contributor.authorMendoza, Jonathan M.
dc.contributor.authorRestrepo, Oscar D.
dc.contributor.authorRuan, Xiulin
dc.contributor.authorChen, Gang
dc.date.accessioned2015-06-12T13:54:04Z
dc.date.available2015-06-12T13:54:04Z
dc.date.issued2015-03
dc.date.submitted2014-09
dc.identifier.issn0295-5075
dc.identifier.issn1286-4854
dc.identifier.urihttp://hdl.handle.net/1721.1/97386
dc.description.abstractThe mean free paths (MFPs) of energy carriers are of critical importance to the nano-engineering of better thermoelectric materials. Despite significant progress in the first-principles–based understanding of the spectral distribution of phonon MFPs in recent years, the spectral distribution of electron MFPs remains unclear. In this work, we compute the energy-dependent electron scatterings and MFPs in silicon from first principles. The electrical conductivity accumulation with respect to electron MFPs is compared to that of the phonon thermal conductivity accumulation to illustrate the quantitative impact of nanostructuring on electron and phonon transport. By combining all electron and phonon transport properties from first principles, we predict the thermoelectric properties of the bulk and nanostructured silicon, and find that silicon with 20 nm nanograins can result in a higher than five times enhancement in their thermoelectric figure of merit as the grain boundaries scatter phonons more significantly than that of electrons due to their disparate MFP distributions.en_US
dc.description.sponsorshipUnited States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Grant DE-SC0001299)en_US
dc.language.isoen_US
dc.publisherIOP Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1209/0295-5075/109/57006en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleFirst-principles simulation of electron mean-free-path spectra and thermoelectric properties in siliconen_US
dc.typeArticleen_US
dc.identifier.citationQiu, Bo, Zhiting Tian, Ajit Vallabhaneni, Bolin Liao, Jonathan M. Mendoza, Oscar D. Restrepo, Xiulin Ruan, and Gang Chen. “First-Principles Simulation of Electron Mean-Free-Path Spectra and Thermoelectric Properties in Silicon.” EPL (Europhysics Letters) 109, no. 5 (March 1, 2015): 57006.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorQiu, Boen_US
dc.contributor.mitauthorTian, Zhitingen_US
dc.contributor.mitauthorLiao, Bolinen_US
dc.contributor.mitauthorMendoza, Jonathan M.en_US
dc.contributor.mitauthorChen, Gangen_US
dc.relation.journalEPL (Europhysics Letters)en_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsQiu, Bo; Tian, Zhiting; Vallabhaneni, Ajit; Liao, Bolin; Mendoza, Jonathan M.; Restrepo, Oscar D.; Ruan, Xiulin; Chen, Gangen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0898-0803
dc.identifier.orcidhttps://orcid.org/0000-0002-3968-8530
dc.identifier.orcidhttps://orcid.org/0000-0003-2704-3839
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record