Show simple item record

dc.contributor.authorCho, Yigil
dc.contributor.authorShin, Joong-Ho
dc.contributor.authorCosta, Avelino
dc.contributor.authorKim, Tae Ann
dc.contributor.authorKunin, Valentin
dc.contributor.authorLi, Ju
dc.contributor.authorLee, Su Yeon
dc.contributor.authorYang, Shu
dc.contributor.authorHan, Heung Nam
dc.contributor.authorSrolovitz, David J.
dc.contributor.authorChoi, In-Suk, Ph. D. Massachusetts Institute of Technology
dc.date.accessioned2015-06-15T16:39:50Z
dc.date.available2015-06-15T16:39:50Z
dc.date.issued2014-12
dc.date.submitted2014-09
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.urihttp://hdl.handle.net/1721.1/97418
dc.description.abstractIn this paper we discuss the transformation of a sheet of material into a wide range of desired shapes and patterns by introducing a set of simple cuts in a multilevel hierarchy with different motifs. Each choice of hierarchical cut motif and cut level allows the material to expand into a unique structure with a unique set of properties. We can reverse-engineer the desired expanded geometries to find the requisite cut pattern to produce it without changing the physical properties of the initial material. The concept was experimentally realized and applied to create an electrode that expands to >800% the original area with only very minor stretching of the underlying material. The generality of our approach greatly expands the design space for materials so that they can be tuned for diverse applications.en_US
dc.description.sponsorshipKorea Institute of Science and Technology (Internal Research Funding Grant 2Z04050)en_US
dc.description.sponsorshipKorea Institute of Science and Technology (Internal Research Funding Grant 2V03320)en_US
dc.description.sponsorshipNational Research Council of Science and Technology (Grant NST-Yunghap-13-1)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Division of Materials Research (Grant 1120901)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Chemical, Bioengineering, Environmental, and Transport Systems (Grant 1240696)en_US
dc.language.isoen_US
dc.publisherNational Academy of Sciences (U.S.)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1073/pnas.1417276111en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceNational Academy of Sciences (U.S.)en_US
dc.titleEngineering the shape and structure of materials by fractal cuten_US
dc.typeArticleen_US
dc.identifier.citationCho, Yigil, Joong-Ho Shin, Avelino Costa, Tae Ann Kim, Valentin Kunin, Ju Li, Su Yeon Lee, et al. “Engineering the Shape and Structure of Materials by Fractal Cut.” Proceedings of the National Academy of Sciences 111, no. 49 (November 24, 2014): 17390–17395.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Nuclear Science and Engineeringen_US
dc.contributor.mitauthorLi, Juen_US
dc.relation.journalProceedings of the National Academy of Sciencesen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCho, Yigil; Shin, Joong-Ho; Costa, Avelino; Kim, Tae Ann; Kunin, Valentin; Li, Ju; Lee, Su Yeon; Yang, Shu; Han, Heung Nam; Choi, In-Suk; Srolovitz, David J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7841-8058
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record