Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions
Author(s)
Xiang, Bin; Patra, Prabir K.; Montzka, Stephen A.; Miller, Scot M.; Elkins, J. W.; Moore, Fred L.; Atlas, Elliot L.; Miller, Benjamin R.; Weiss, Ray F.; Wofsy, Steven C.; Prinn, Ronald G; ... Show more Show less
DownloadXiang-2014-Global emissions of.pdf (864.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
HCFC-22 (CHClF[subscript 2]) and HFC-134a (CH[subscript 2]FCF[subscript 3]) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009–2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009–2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere.
Date issued
2014-12Department
Massachusetts Institute of Technology. Center for Global Change Science; Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary SciencesJournal
Proceedings of the National Academy of Sciences
Publisher
National Academy of Sciences (U.S.)
Citation
Xiang, Bin, Prabir K. Patra, Stephen A. Montzka, Scot M. Miller, James W. Elkins, Fred L. Moore, Elliot L. Atlas, et al. “Global Emissions of Refrigerants HCFC-22 and HFC-134a: Unforeseen Seasonal Contributions.” Proceedings of the National Academy of Sciences 111, no. 49 (November 24, 2014): 17379–17384.
Version: Final published version
ISSN
0027-8424
1091-6490