MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ab initio study of electron-phonon interaction in phosphorene

Author(s)
Liao, Bolin; Zhou, Jiawei; Qiu, Bo; Chen, Gang; Dresselhaus, Mildred
Thumbnail
DownloadPhysRevB.91.235419.pdf (1.042Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The monolayer of black phosphorus, or “phosphorene,” has recently emerged as a two-dimensional semiconductor with intriguing highly anisotropic transport properties. Existing calculations of its intrinsic phonon-limited electronic transport properties so far rely on the deformation potential approximation, which is in general not directly applicable to anisotropic materials since the deformation along one specific direction can scatter electrons traveling in all directions. We perform a first-principles calculation of the electron-phonon interaction in phosphorene based on density functional perturbation theory and Wannier interpolation. Our calculation reveals that (1) the high anisotropy provides extra phase space for electron-phonon scattering, and (2) optical phonons have appreciable contributions. Both effects cannot be captured by the deformation potential calculations. Our simulation predicts carrier mobilities ~170cm[superscript 2]/Vs for both electrons and holes at 300K, and a thermoelectric figure of merit zT of up to 0.14 in p-type impurity-free phosphorene at 500K.
Date issued
2015-06
URI
http://hdl.handle.net/1721.1/97436
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
Liao, Bolin, Jiawei Zhou, Bo Qiu, Mildred S. Dresselhaus, and Gang Chen. “Ab Initio Study of Electron-Phonon Interaction in Phosphorene.” Phys. Rev. B 91, no. 23 (June 2015). © 2015 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.