Electron Transfer Control in Soluble Methane Monooxygenase
Author(s)
Wang, Weixue; Iacob, Roxana E.; Luoh, Rebecca P.; Engen, John R.; Lippard, Stephen J.
DownloadWang-2014-Electron transfer control.pdf (4.699Mb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
The hydroxylation or epoxidation of hydrocarbons by bacterial multicomponent monooxygenases (BMMs) requires the interplay of three or four protein components. How component protein interactions control catalysis, however, is not well understood. In particular, the binding sites of the reductase components on the surface of their cognate hydroxylases and the role(s) that the regulatory proteins play during intermolecular electron transfer leading to the hydroxylase reduction have been enigmatic. Here we determine the reductase binding site on the hydroxylase of a BMM enzyme, soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath). We present evidence that the ferredoxin domain of the reductase binds to the canyon region of the hydroxylase, previously determined to be the regulatory protein binding site as well. The latter thus inhibits reductase binding to the hydroxylase and, consequently, intermolecular electron transfer from the reductase to the hydroxylase diiron active site. The binding competition between the regulatory protein and the reductase may serve as a control mechanism for regulating electron transfer, and other BMM enzymes are likely to adopt the same mechanism.
Date issued
2014-06Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of ChemistryJournal
Journal of the American Chemical Society
Publisher
American Chemical Society (ACS)
Citation
Wang, Weixue, Roxana E. Iacob, Rebecca P. Luoh, John R. Engen, and Stephen J. Lippard. “Electron Transfer Control in Soluble Methane Monooxygenase.” Journal of the American Chemical Society 136, no. 27 (July 9, 2014): 9754–62.
© 2014 American Chemical Society
Version: Final published version
ISSN
0002-7863
1520-5126