MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy

Author(s)
Valencia, Pedro M.; Pridgen, Eric M.; Rhee, Minsoung; Langer, Robert; Farokhzad, Omid C.; Karnik, Rohit; ... Show more Show less
Thumbnail
DownloadKarnik_Microfluidic platform.pdf (1.012Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Taking a nanoparticle (NP) from discovery to clinical translation has been slow compared to small molecules, in part by the lack of systems that enable their precise engineering and rapid optimization. In this work we have developed a microfluidic platform for the rapid, combinatorial synthesis and optimization of NPs. The system takes in a number of NP precursors from which a library of NPs with varying size, surface charge, target ligand density, and drug load is produced in a reproducible manner. We rapidly synthesized 45 different formulations of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) NPs of different size and surface composition and screened and ranked the NPs for their ability to evade macrophage uptake in vitro. Comparison of the results to pharmacokinetic studies in vivo in mice revealed a correlation between in vitro screen and in vivo behavior. Next, we selected NP synthesis parameters that resulted in longer blood half-life and used the microfluidic platform to synthesize targeted NPs with varying targeting ligand density (using a model targeting ligand against cancer cells). We screened NPs in vitro against prostate cancer cells as well as macrophages, identifying one formulation that exhibited high uptake by cancer cells yet similar macrophage uptake compared to nontargeted NPs. In vivo, the selected targeted NPs showed a 3.5-fold increase in tumor accumulation in mice compared to nontargeted NPs. The developed microfluidic platform in this work represents a tool that could potentially accelerate the discovery and clinical translation of NPs.
Date issued
2013-11
URI
http://hdl.handle.net/1721.1/97535
Department
MIT-Harvard Center for Cancer Nanotechnology Excellence; Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
ACS Nano
Publisher
American Chemical Society (ACS)
Citation
Valencia, Pedro M., Eric M. Pridgen, Minsoung Rhee, Robert Langer, Omid C. Farokhzad, and Rohit Karnik. “Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy.” ACS Nano 7, no. 12 (December 23, 2013): 10671–10680.
Version: Author's final manuscript
ISSN
1936-0851
1936-086X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.