MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Systematic identification of signaling pathways with potential to confer anticancer drug resistance

Author(s)
Martz, C. A.; Ottina, Kathleen; Singleton, K. R.; Jasper, J. S.; Wardell, S. E.; Peraza-Penton, A.; Anderson, G. R.; Winter, P. S.; Alley, H. M.; Kwong, L. N.; Cooper, Z. A.; Tetzlaff, M.; Chen, P.-L.; Rathmell, J. C.; Flaherty, K. T.; Wargo, J. A.; McDonnell, D. P.; Wood, K. C.; Wang, Tim; Sabatini, David; ... Show more Show less
Thumbnail
DownloadSabatini_Systematic identification.pdf (1.144Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Cancer cells can activate diverse signaling pathways to evade the cytotoxic action of drugs. We created and screened a library of barcoded pathway-activating mutant complementary DNAs to identify those that enhanced the survival of cancer cells in the presence of 13 clinically relevant, targeted therapies. We found that activation of the RAS-MAPK (mitogen-activated protein kinase), Notch1, PI3K (phosphoinositide 3-kinase)–mTOR (mechanistic target of rapamycin), and ER (estrogen receptor) signaling pathways often conferred resistance to this selection of drugs. Activation of the Notch1 pathway promoted acquired resistance to tamoxifen (an ER-targeted therapy) in serially passaged breast cancer xenografts in mice, and treating mice with a γ-secretase inhibitor to inhibit Notch signaling restored tamoxifen sensitivity. Markers of Notch1 activity in tumor tissue correlated with resistance to tamoxifen in breast cancer patients. Similarly, activation of Notch1 signaling promoted acquired resistance to MAPK inhibitors in BRAF[superscript V600E] melanoma cells in culture, and the abundance of Notch1 pathway markers was increased in tumors from a subset of melanoma patients. Thus, Notch1 signaling may be a therapeutic target in some drug-resistant breast cancers and melanomas. Additionally, multiple resistance pathways were activated in melanoma cell lines with intrinsic resistance to MAPK inhibitors, and simultaneous inhibition of these pathways synergistically induced drug sensitivity. These data illustrate the potential for systematic identification of the signaling pathways controlling drug resistance that could inform clinical strategies and drug development for multiple types of cancer. This approach may also be used to advance clinical options in other disease contexts.
Date issued
2014-12
URI
http://hdl.handle.net/1721.1/97538
Department
Massachusetts Institute of Technology. Department of Biology; Whitehead Institute for Biomedical Research
Journal
Science Signaling
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Martz, C. A., K. A. Ottina, K. R. Singleton, J. S. Jasper, S. E. Wardell, A. Peraza-Penton, G. R. Anderson, et al. “Systematic Identification of Signaling Pathways with Potential to Confer Anticancer Drug Resistance.” Science Signaling 7, no. 357 (December 23, 2014): ra121–ra121.
Version: Author's final manuscript
ISSN
1945-0877
1937-9145

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.