Show simple item record

dc.contributor.authorWhelan, Thomas
dc.contributor.authorKaess, Michael
dc.contributor.authorFinman, Ross Edward
dc.contributor.authorLeonard, John Joseph
dc.date.accessioned2015-06-30T15:33:22Z
dc.date.available2015-06-30T15:33:22Z
dc.date.issued2014-05
dc.identifier.isbn978-1-4799-3685-4
dc.identifier.urihttp://hdl.handle.net/1721.1/97582
dc.description.abstractIn this paper we present a method for incrementally segmenting large RGB-D maps as they are being created. Recent advances in dense RGB-D mapping have led to maps of increasing size and density. Segmentation of these raw maps is a first step for higher-level tasks such as object detection. Current popular methods of segmentation scale linearly with the size of the map and generally include all points. Our method takes a previously segmented map and segments new data added to that map incrementally online. Segments in the existing map are re-segmented with the new data based on an iterative voting method. Our segmentation method works in maps with loops to combine partial segmentations from each traversal into a complete segmentation model. We verify our algorithm on multiple real-world datasets spanning many meters and millions of points in real-time. We compare our method against a popular batch segmentation method for accuracy and timing complexity.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-10-1-0936)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-11-1-0688)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-12-10020)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS-1318392)en_US
dc.description.sponsorshipScience Foundation Ireland (Strategic Research Cluster Grant 07/SRC/I1168)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2014.6907666en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleEfficient incremental map segmentation in dense RGB-D mapsen_US
dc.typeArticleen_US
dc.identifier.citationFinman, Ross, Thomas Whelan, Michael Kaess, and John J. Leonard. “Efficient Incremental Map Segmentation in Dense RGB-D Maps.” 2014 IEEE International Conference on Robotics and Automation (ICRA) (May 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorFinman, Ross Edwarden_US
dc.contributor.mitauthorLeonard, John Josephen_US
dc.relation.journalProceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsFinman, Ross; Whelan, Thomas; Kaess, Michael; Leonard, John J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8863-6550
dc.identifier.orcidhttps://orcid.org/0000-0002-6027-6979
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record