Show simple item record

dc.contributor.authorWhelan, Thomas
dc.contributor.authorKaess, Michael
dc.contributor.authorJohannsson, Hordur
dc.contributor.authorFallon, Maurice Francis
dc.contributor.authorLeonard, John Joseph
dc.contributor.authorMcDonald, John
dc.date.accessioned2015-06-30T15:45:15Z
dc.date.available2015-06-30T15:45:15Z
dc.date.issued2014-12
dc.identifier.issn0278-3649
dc.identifier.issn1741-3176
dc.identifier.urihttp://hdl.handle.net/1721.1/97583
dc.description.abstractWe present a new simultaneous localization and mapping (SLAM) system capable of producing high-quality globally consistent surface reconstructions over hundreds of meters in real time with only a low-cost commodity RGB-D sensor. By using a fused volumetric surface reconstruction we achieve a much higher quality map over what would be achieved using raw RGB-D point clouds. In this paper we highlight three key techniques associated with applying a volumetric fusion-based mapping system to the SLAM problem in real time. First, the use of a GPU-based 3D cyclical buffer trick to efficiently extend dense every-frame volumetric fusion of depth maps to function over an unbounded spatial region. Second, overcoming camera pose estimation limitations in a wide variety of environments by combining both dense geometric and photometric camera pose constraints. Third, efficiently updating the dense map according to place recognition and subsequent loop closure constraints by the use of an ‘as-rigid-as-possible’ space deformation. We present results on a wide variety of aspects of the system and show through evaluation on de facto standard RGB-D benchmarks that our system performs strongly in terms of trajectory estimation, map quality and computational performance in comparison to other state-of-the-art systems.en_US
dc.description.sponsorshipScience Foundation Ireland (Strategic Research Cluster Grant 07/SRC/I1168)en_US
dc.description.sponsorshipIrish Research Council (Embark Initiative)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-10-1-0936)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-11-1-0688)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-12-1-0093)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Grant N00014-12-10020)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS-1318392)en_US
dc.language.isoen_US
dc.publisherSage Publicationsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1177/0278364914551008en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleReal-time large-scale dense RGB-D SLAM with volumetric fusionen_US
dc.typeArticleen_US
dc.identifier.citationWhelan, T., M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J. McDonald. “Real-Time Large-Scale Dense RGB-D SLAM with Volumetric Fusion.” The International Journal of Robotics Research 34, no. 4–5 (April 1, 2015): 598–626.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorJohannsson, Horduren_US
dc.contributor.mitauthorFallon, Maurice Francisen_US
dc.contributor.mitauthorLeonard, John Josephen_US
dc.relation.journalThe International Journal of Robotics Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWhelan, T.; Kaess, M.; Johannsson, H.; Fallon, M.; Leonard, J. J.; McDonald, J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8863-6550
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record