Show simple item record

dc.contributor.authorShabani, A.
dc.contributor.authorOmar, Yasser
dc.contributor.authorRabitz, H.
dc.contributor.authorMohseni, Masoud
dc.contributor.authorLloyd, Seth
dc.date.accessioned2015-07-01T14:33:03Z
dc.date.available2015-07-01T14:33:03Z
dc.date.issued2013-05
dc.date.submitted2012-12
dc.identifier.issn00219606
dc.identifier.issn1089-7690
dc.identifier.urihttp://hdl.handle.net/1721.1/97597
dc.description.abstractWe explore various design principles for efficient excitation energy transport in complex quantum systems. We investigate energy transfer efficiency in randomly disordered geometries consisting of up to 20 chromophores to explore spatial and spectral properties of small natural/artificial Light-Harvesting Complexes (LHC). We find significant statistical correlations among highly efficient random structures with respect to ground state properties, excitonic energy gaps, multichromophoric spatial connectivity, and path strengths. These correlations can even exist beyond the optimal regime of environment-assisted quantum transport. For random configurations embedded in spatial dimensions of 30 Å or 50 Å, we observe that the transport efficiency saturates to its maximum value if the systems contain around 7 or 14 chromophores, respectively. Remarkably, these optimum values coincide with the number of chlorophylls in the Fenna-Matthews-Olson protein complex and LHC II monomers, respectively, suggesting a potential natural optimization with respect to chromophoric density.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. QuBE Programen_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipInstitute for Scientific Interchangeen_US
dc.description.sponsorshipNEC Corporationen_US
dc.description.sponsorshipLockheed Martinen_US
dc.description.sponsorshipIntel Corporationen_US
dc.description.sponsorshipProject IT-PQuantumen_US
dc.description.sponsorshipPortuguese Science and Technology Foundation (Programme POCTI/POCI/PTDC)en_US
dc.description.sponsorshipPortuguese Science and Technology Foundation (Project SFRH/BPD/71897/2010)en_US
dc.description.sponsorshipPortuguese Science and Technology Foundation (Project PEst-OE/EEI/LA0008/2013)en_US
dc.description.sponsorshipPortuguese Science and Technology Foundation (Project PTDC/EEA-TEL/103402/2008 QuantPrivTel)en_US
dc.description.sponsorshipSeventh Framework Programme (European Commission) (Grant Agreement 318287)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4807084en_US
dc.rightsCreative Commons Attribution 3.0 Unported Licenceen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceAIPen_US
dc.titleGeometrical effects on energy transfer in disordered open quantum systemsen_US
dc.typeArticleen_US
dc.identifier.citationMohseni, M., A. Shabani, S. Lloyd, Y. Omar, and H. Rabitz. “Geometrical Effects on Energy Transfer in Disordered Open Quantum Systems.” The Journal of Chemical Physics 138, no. 20 (2013): 204309.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorMohseni, Masouden_US
dc.contributor.mitauthorLloyd, Sethen_US
dc.relation.journalThe Journal of Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMohseni, M.; Shabani, A.; Lloyd, S.; Omar, Y.; Rabitz, H.en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record