Show simple item record

dc.contributor.authorShabani, A.
dc.contributor.authorRabitz, H.
dc.contributor.authorMohseni, Masoud
dc.contributor.authorLloyd, Seth
dc.date.accessioned2015-07-01T14:38:22Z
dc.date.available2015-07-01T14:38:22Z
dc.date.issued2014-01
dc.date.submitted2013-07
dc.identifier.issn0021-9606
dc.identifier.issn1089-7690
dc.identifier.urihttp://hdl.handle.net/1721.1/97598
dc.description.abstractUnderlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k[subscript B]λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. QuBE Programen_US
dc.description.sponsorshipEni S.p.A. (Firm)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canadaen_US
dc.description.sponsorshipGoogle (Firm)en_US
dc.description.sponsorshipNational Science Foundation (U.S.)en_US
dc.description.sponsorshipInstitute for Scientific Interchangeen_US
dc.description.sponsorshipNEC Corporationen_US
dc.description.sponsorshipIntel Corporationen_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4856795en_US
dc.rightsCreative Commons Attribution 3.0 Unported Licenceen_US
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en_US
dc.sourceAIPen_US
dc.titleEnergy-scales convergence for optimal and robust quantum transport in photosynthetic complexesen_US
dc.typeArticleen_US
dc.identifier.citationMohseni, M., A. Shabani, S. Lloyd, and H. Rabitz. “Energy-Scales Convergence for Optimal and Robust Quantum Transport in Photosynthetic Complexes.” The Journal of Chemical Physics 140, no. 3 (January 21, 2014): 035102.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorMohseni, Masouden_US
dc.contributor.mitauthorLloyd, Sethen_US
dc.relation.journalThe Journal of Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H.en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record