Quantum principal component analysis
Author(s)
Lloyd, Seth; Mohseni, Masoud; Rebentrost, Frank Patrick
DownloadLloyd_Quantum principal.pdf (76.16Kb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
The usual way to reveal properties of an unknown quantum state, given many copies of a system in that state, is to perform measurements of different observables and to analyse the results statistically. For non-sparse but low-rank quantum states, revealing eigenvectors and corresponding eigenvalues in classical form scales super-linearly with the system dimension. Here we show that multiple copies of a quantum system with density matrix ρ can be used to construct the unitary transformation e[superscript −iρt]. As a result, one can perform quantum principal component analysis of an unknown low-rank density matrix, revealing in quantum form the eigenvectors corresponding to the large eigenvalues in time exponentially faster than any existing algorithm. We discuss applications to data analysis, process tomography and state discrimination.
Date issued
2014-07Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Research Laboratory of ElectronicsJournal
Nature Physics
Publisher
Nature Publishing Group
Citation
Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. “Quantum Principal Component Analysis.” Nat Phys 10, no. 9 (July 27, 2014): 631–633.
Version: Original manuscript
ISSN
1745-2473
1745-2481